1887

Abstract

HpdR, an IclR-family regulator in , is a substrate-dependent repressor for the tyrosine catabolic gene . In this study, S1 nuclease protection assays revealed that is subject to a negative autoregulation. Purified HpdR showed specific DNA-binding activity for the promoter region of , indicating that the autoregulation of is performed directly. The disruption of led to reduced production of CDA by J1501, suggesting a positive effect of on CDA biosynthesis. Electrophoretic mobility shift assays showed that HpdR specifically bound to the promoter region of (SCO3229 in the CDA gene cluster), encoding 4-hydroxymandelic acid synthase. Disruption of in J1501 abolished CDA production. It is possible that regulates CDA biosynthesis by controlling the transcription of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.038604-0
2010-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/9/2641.html?itemId=/content/journal/micro/10.1099/mic.0.038604-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410
    [Google Scholar]
  2. Bierman M., Logan R., O'Brien K., Seno E. T., Rao R. N., Schoner B. E. 1992; Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116:43–49
    [Google Scholar]
  3. Brownlee J. M., Johnson-Winters K., Harrison D. H., Moran G. R. 2004; Structure of the ferrous form of (4-hydroxyphenol) pyruvate dioxygenase from Streptomyces avermitilis in complex with the therapeutic herbicide, NTBC. Biochemistry 43:6370–6377
    [Google Scholar]
  4. Chater K. F. 1993; Genetics of differentiation in Streptomyces. Annu Rev Microbiol 47:685–713
    [Google Scholar]
  5. Chater K. F., Chandra G. 2008; The use of the rare UUA codon to define “expression space” for genes involved in secondary metabolism, development and environmental adaptation in streptomyces. J Microbiol 46:1–11
    [Google Scholar]
  6. Chater K. F., Bruton C. J., King A. A., Suarez J. E. 1982; The expression of Streptomyces and Escherichia coli drug resistance determinants cloned into the Streptomyces phage PC31. Gene 19:21–32
    [Google Scholar]
  7. Denoya C. D., Skinner D. D., Morgenstern M. R. 1994; A Streptomyces avermitilis gene encoding a 4-hydroxyphenylpyruvic acid dioxygenase-like protein that directs the production of homogentistic acid and ochronotic pigment in Escherichia coli. J Bacteriol 176:5312–5319
    [Google Scholar]
  8. Gui L., Sunnarborg A., Pan B., LaPorte D. 1996; Autoregulation of iclR, the gene encoding the repressor of the glyoxylate bypass operon. J Bacteriol 178:321–324
    [Google Scholar]
  9. Gunsior M., Ravel J., Challis G. L., Townsend C. A. 2004; Engineering 4-hydroxyphenolpyruvate dioxygenase to a p-hydroxymandelate synthesase and evidence for the proposed benzene oxide intermediate in homogentisate formation. Biochemistry 43:663–674
    [Google Scholar]
  10. Hojati Z., Milne C., Harvey B., Gordon L., Borg M., Flett F., Wilkinson B., Sidebottom P. J., Rudd B. A. M. other authors 2002; Structure, biosynthetic origin, and engineered biosynthesis of calcium-dependent antibiotics from Streptomyces coelicolor. Chem Biol 9:1175–1187
    [Google Scholar]
  11. Johnson-Winters K., Purpero V. M., Kavana M., Nelson T., Moran G. R. 2003; (4-Hydroxyphenol) pyruvate dioxygenase from Streptomyces avermitilis: the basis for ordered substrate addition. Biochemistry 42:2072–2080
    [Google Scholar]
  12. Kieser T., Bibb M. J., Buttner M. J., Chater K. F., Hopwood D. A. 2000 Practical Streptomyces Genetics Norwich: John Innes Foundation;
    [Google Scholar]
  13. Kuhstoss S., Rao R. N. 1991; Analysis of the integration function of the streptomycete bacteriophage φC31. J Mol Biol 222:897–908
    [Google Scholar]
  14. Li W., Ying X., Guo Y., Yu Z., Zhou X., Deng Z., Kieser H., Chater K. F., Tao M. 2006; Identification of a gene negatively affecting antibiotic production and morphological differentiation in Streptomyces coelicolor A3(2. J Bacteriol 188:8368–8375
    [Google Scholar]
  15. Li R., Xie Z., Tian Y., Yang H., Chen W., You D., Liu G., Deng Z., Tan H. 2009; polR, a pathway-specific transcriptional regulatory gene, positively controls polyoxin biosynthesis in Streptomyces cacaoi var. asoensis. Microbiology 155:1819–1831
    [Google Scholar]
  16. Lipman D. J., Pearson W. R. 1985; Rapid and sensitive protein similarity searches. Science 227:1435–1441
    [Google Scholar]
  17. Liu G., Tian Y., Yang H., Tan H. 2005; A pathway-specific transcription regulational regulatory gene for nikkomycin biosynthesis in Streptomyces ansochromogenes that also influences colony development. Mol Microbiol 55:1855–1866
    [Google Scholar]
  18. MacNeil D. J., Gewain K. M., Ruby C. L., Dezeny G., Gibbons P. H., MacNeil T. 1992; Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilising a novel integrating vector. Gene 111:61–68
    [Google Scholar]
  19. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Labortory;
    [Google Scholar]
  20. Santamarta I., López-García M. T., Pérez-Redondo R., Koekman B., Martín J. F., Liras P. 2007; Connecting primary and secondary metabolism: AreB, an IclR-like protein, binds the ARE ( ccaR) sequence of S. clavuligerus and modulates leucine biosynthesis and cephamycin C and clavulanic acid production. Mol Microbiol 66:511–524
    [Google Scholar]
  21. Tan H., Tian Y., Yang H., Liu G., Nie L. 2002; A novel Streptomyces gene, samR, with different effects on differentiation of Streptomyces ansochromogenes and Streptomyces coelicolor. Arch Microbiol 177:274–278
    [Google Scholar]
  22. Tian Y., Fowler K., Findlay K., Tan H., Chater K. 2007; An unusual response regulator influences sporulation at early and late stages in Streptomyces coelicolor. J Bacteriol 189:2873–2885
    [Google Scholar]
  23. Traag B. A., Kelemen G. H., van Wezel G. P. 2004; Transcription of the sporulation gene ssgA is activated by the IclR-type regulator SsgR in a whi-independent manner in Streptomyces coelicolor A3(2. Mol Microbiol 53:985–1000
    [Google Scholar]
  24. Wang L., Tian X., Wang J., Yang H., Fan K., Xu G., Yang K., Tan H. 2009; Autoregulation of antibiotic biosynthesis by binding of the end product to an atypical response regulator. Proc Natl Acad Sci U S A 106:8617–8622
    [Google Scholar]
  25. Yang H., Wang L., Xie Z., Tian Y., Liu G., Tan H. 2007; The tyrosine degradation gene hppD is transcriptionally activated by HpdA and repressed by HpdR in Streptomyces coelicolor, while hpdA is negatively autoregulated and repressed by HpdR. Mol Microbiol 65:1064–1077
    [Google Scholar]
  26. Yang Y. H., Song E., Kim E. J., Lee K., Kim W. S., Park S. S., Hahn J. S., Kim B. G. 2009; NadR, an IclR-like regulator involved in amino-acid-dependent growth, quorum sensing, and antibiotic production in Streptomyces coelicolor. Appl Microbiol Biotechnol 82:501–511
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.038604-0
Loading
/content/journal/micro/10.1099/mic.0.038604-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error