1887

Abstract

DNA–protein interactions that occur during transcription initiation play an important role in regulating gene expression. To initiate transcription, RNA polymerase (RNAP) binds to promoters in a sequence-specific fashion. This is followed by a series of steps governed by the equilibrium binding and kinetic rate constants, which in turn determine the overall efficiency of the transcription process. We present here the first detailed kinetic analysis of promoter–RNAP interactions during transcription initiation in the -dependent promoters P, P and P of . The promoters show comparable equilibrium binding affinity but differ significantly in open complex formation, kinetics of isomerization and promoter clearance. Furthermore, the two promoters exhibit varied kinetic properties during transcription initiation and appear to be subjected to different modes of regulation. In addition to distinct kinetic patterns, each one of the housekeeping promoters studied has its own rate-limiting step in the initiation pathway, indicating the differences in their regulation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.038620-0
2010-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/7/1942.html?itemId=/content/journal/micro/10.1099/mic.0.038620-0&mimeType=html&fmt=ahah

References

  1. Arnvig K. B., Gopal B., Papavinasasundaram K. G., Cox R. A., Colston M. J. 2005; The mechanism of upstream activation in the rrnB operon of Mycobacterium smegmatis is different from the Escherichia coli paradigm. Microbiology 151:467–473
    [Google Scholar]
  2. Barker M. M., Gourse R. L. 2001; Regulation of rRNA transcription correlates with nucleoside triphosphate sensing. J Bacteriol 183:6315–6323
    [Google Scholar]
  3. Brosch R., Pym A. S., Gordon S. V., Cole S. T. 2001; The evolution of mycobacterial pathogenicity: clues from comparative genomics. Trends Microbiol 9:452–458
    [Google Scholar]
  4. Browning D. F., Busby S. J. 2004; The regulation of bacterial transcription initiation. Nat Rev Microbiol 2:57–65
    [Google Scholar]
  5. Brunner M., Bujard H. 1987; Promoter recognition and promoter strength in the Escherichia coli system. EMBO J 6:3139–3144
    [Google Scholar]
  6. Buc H., McClure W. R. 1985; Kinetics of open complex formation between Escherichia coli RNA polymerase and the lac UV5 promoter. Evidence for a sequential mechanism involving three steps. Biochemistry 24:2712–2723
    [Google Scholar]
  7. Burns H. D., Belyaeva T. A., Busby S. J., Minchin S. D. 1996; Temperature-dependence of open-complex formation at two Escherichia coli promoters with extended −10 sequences. Biochem J 317:305–311
    [Google Scholar]
  8. Chakraborty A., Nagaraja V. 2006; Dual role for transactivator protein C in activation of mom promoter of bacteriophage Mu. J Biol Chem 281:8511–8517
    [Google Scholar]
  9. China A., Nagaraja V. 2010; Purification of RNA polymerase from mycobacteria for optimized promoter–polymerase interactions. Protein Expr Purif 69:235–242
    [Google Scholar]
  10. Cole S. T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S. V., Eiglmeier K., Gas S. other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544
    [Google Scholar]
  11. Gomez M., Smith I. 2000; Determinants of mycobacterial gene expression. In Molecular Genetics of Mycobacteria Edited by Hatfull G. F., Jacobs W. R. Jr Washington, DC: American Society for Microbiology;
    [Google Scholar]
  12. Gomez M., Doukhan L., Nair G., Smith I. 1998; sigA is an essential gene in Mycobacterium smegmatis. Mol Microbiol 29:617–628
    [Google Scholar]
  13. Gonzalez-y-Merchand J. A., Garcia M. J., Gonzalez-Rico S., Colston M. J., Cox R. A. 1997; Strategies used by pathogenic and nonpathogenic mycobacteria to synthesize rRNA. J Bacteriol 179:6949–6958
    [Google Scholar]
  14. Gonzalez-y-Merchand J. A., Colston M. J., Cox R. A. 1998; Roles of multiple promoters in transcription of ribosomal DNA: effects of growth conditions on precursor rRNA synthesis in mycobacteria. J Bacteriol 180:5756–5761
    [Google Scholar]
  15. Haugen S. P., Ross W., Gourse R. L. 2008; Advances in bacterial promoter recognition and its control by factors that do not bind DNA. Nat Rev Microbiol 6:507–519
    [Google Scholar]
  16. Helmann J. D. 2009; RNA polymerase: a nexus of gene regulation. Methods 47:1–5
    [Google Scholar]
  17. Helmann J. D., deHaseth P. L. 1999; Protein–nucleic acid interactions during open complex formation investigated by systematic alteration of the protein and DNA binding partners. Biochemistry 38:5959–5967
    [Google Scholar]
  18. Hsu L. M. 2009; Monitoring abortive initiation. Methods 47:25–36
    [Google Scholar]
  19. Jain S., Kaushal D., DasGupta S. K., Tyagi A. K. 1997; Construction of shuttle vectors for genetic manipulation and molecular analysis of mycobacteria. Gene 190:37–44
    [Google Scholar]
  20. Ji Y. E., Colston M. J., Cox R. A. 1994; The ribosomal RNA ( rrn) operons of fast-growing mycobacteria: primary and secondary structures and their relation to rrn operons of pathogenic slow-growers. Microbiology 140:2829–2840
    [Google Scholar]
  21. Jia Y., Patel S. S. 1997; Kinetic mechanism of transcription initiation by bacteriophage T7 RNA polymerase. Biochemistry 36:4223–4232
    [Google Scholar]
  22. Juang Y.-L., Helmann J. D. 1995; Pathway of promoter melting by Bacillus subtilis RNA polymerase at a stable RNA promoter: effects of temperature, delta protein, and sigma factor mutations. Biochemistry 34:8465–8473
    [Google Scholar]
  23. Lisser S., Margalit H. 1993; Compilation of E. coli mRNA promoter sequences. Nucleic Acids Res 21:1507–1516
    [Google Scholar]
  24. Lutz R., Lozinski T., Ellinger T., Bujard H. 2001; Dissecting the functional program of Escherichia coli promoters: the combined mode of action of Lac repressor and AraC activator. Nucleic Acids Res 29:3873–3881
    [Google Scholar]
  25. Manganelli R., Dubnau E., Tyagi S., Kramer F. R., Smith I. 1999; Differential expression of 10 sigma factor genes in Mycobacterium tuberculosis. Mol Microbiol 31:715–724
    [Google Scholar]
  26. McClure W. R. 1985; Mechanism and control of transcription initiation in prokaryotes. Annu Rev Biochem 54:171–204
    [Google Scholar]
  27. Menendez M. C., Garcia M. J., Navarro M. C., Gonzalez-y-Merchand J. A., Rivera-Gutierrez S., Garcia-Sanchez L., Cox R. A. 2002; Characterization of an rRNA operon ( rrnB) of Mycobacterium fortuitum and other mycobacterial species: implications for the classification of mycobacteria. J Bacteriol 184:1078–1088
    [Google Scholar]
  28. Miller J. H. 1992 A Short Course in Bacterial Genetics: a Laboratory Manual and Handbook for Escherichia Coli and Related Bacteria p 71 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
  29. Mukherjee R., Chatterji D. 2008; Stationary phase induced alterations in mycobacterial RNA polymerase assembly: a cue to its phenotypic resistance towards rifampicin. Biochem Biophys Res Commun 369:899–904
    [Google Scholar]
  30. Murray H. D., Gourse R. L. 2004; Unique roles of the rrn P2 rRNA promoters in Escherichia coli. Mol Microbiol 52:1375–1387
    [Google Scholar]
  31. Nudler E. 2009; RNA polymerase active center: the molecular engine of transcription. Annu Rev Biochem 78:335–361
    [Google Scholar]
  32. Rodrigue S., Provvedi R., Jacques P. E., Gaudreau L., Manganelli R. 2006; The sigma factors of Mycobacterium tuberculosis. FEMS Microbiol Rev 30:926–941
    [Google Scholar]
  33. Sander P., Prammananan T., Bottger E. C. 1996; Introducing mutations into a chromosomal rRNA gene using a genetically modified eubacterial host with a single rRNA operon. Mol Microbiol 22:841–848
    [Google Scholar]
  34. Schneider D. A., Murray H. D., Gourse R. L. 2003; Measuring control of transcription initiation by changing concentrations of nucleotides and their derivatives. Methods Enzymol 370:606–617
    [Google Scholar]
  35. Schroeder L. A., Choi A. J., DeHaseth P. L. 2007; The −11A of promoter DNA and two conserved amino acids in the melting region of σ70 both directly affect the rate limiting step in formation of the stable RNA polymerase–promoter complex, but they do not necessarily interact. Nucleic Acids Res 35:4141–4153
    [Google Scholar]
  36. Smith I., Bishai W. R., Nagaraja V. 2005; Control of mycobacterial transcription. In Tuberculosis and the Tubercle Bacillus pp 219–231 Edited by Cole S. T., Eisenach K. D., McMurray D. N, Jacobs W. R. Jr Washington, DC: American Society for Microbiology;
    [Google Scholar]
  37. Snapper S. B., Melton R. E., Mustafa S., Kieser T., Jacobs W. R. Jr 1990; Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol Microbiol 4:1911–1919
    [Google Scholar]
  38. Stadthagen-Gomez G., Helguera-Repetto A. C., Cerna-Cortes J. F., Goldstein R. A., Cox R. A., Gonzalez-y-Merchand J. A. 2008; The organization of two rRNA ( rrn) operons of the slow-growing pathogen Mycobacterium celatum provides key insights into mycobacterial evolution. FEMS Microbiol Lett 280:102–112
    [Google Scholar]
  39. Straney S. B., Crothers D. M. 1987; Kinetics of the stages of transcription initiation at the Escherichia coli lac UV5 promoter. Biochemistry 26:5063–5070
    [Google Scholar]
  40. Triccas J. A., Parish T., Britton W. J., Gicquel B. 1998; An inducible expression system permitting the efficient purification of a recombinant antigen from Mycobacterium smegmatis. FEMS Microbiol Lett 167:151–156
    [Google Scholar]
  41. Tsujikawa L., Tsodikov O. V., deHaseth P. L. 2002; Interaction of RNA polymerase with forked DNA: evidence for two kinetically significant intermediates on the pathway to the final complex. Proc Natl Acad Sci U S A 99:3493–3498
    [Google Scholar]
  42. Unniraman S., Nagaraja V. 1999; Regulation of DNA gyrase operon in Mycobacterium smegmatis: a distinct mechanism of relaxation stimulated transcription. Genes Cells 4:697–706
    [Google Scholar]
  43. Unniraman S., Chatterji M., Nagaraja V. 2002; DNA gyrase genes in Mycobacterium tuberculosis: a single operon driven by multiple promoters. J Bacteriol 184:5449–5456
    [Google Scholar]
  44. Verma A., Sampla A. K., Tyagi J. S. 1999; Mycobacterium tuberculosis rrn promoters: differential usage and growth rate-dependent control. J Bacteriol 181:4326–4333
    [Google Scholar]
  45. Waagmeester A., Thompson J., Reyrat J. M. 2005; Identifying sigma factors in Mycobacterium smegmatis by comparative genomic analysis. Trends Microbiol 13:505–509
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.038620-0
Loading
/content/journal/micro/10.1099/mic.0.038620-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error