1887

Abstract

The binding properties of low- and high-adhesive forms of FimH adhesins from serovars Enteritidis and Typhimurium ( Enteritidis and Typhimurium) were studied using chimeric proteins containing an additional peptide that represents an N-terminal extension of the FimF protein. This modification, by taking advantage of a donor strand exchange mechanism, closes the hydrophobic groove in the fimbrial domain of the FimH adhesin. Such self-complemented adhesins (scFimH) did not form aggregates and were more stable (resistant to proteolytic cleavage) than native FimH. High-adhesive variants of scFimH proteins, with alanine at position 61 and serine at position 118, were obtained by site-directed mutagenesis of genes from low-adhesive variants of Enteritidis and Typhimurium, with glycine at position 61 and phenylalanine at position 118. Direct kinetic analysis using surface plasmon resonance (SPR) and glycoproteins carrying high-mannose carbohydrate chains (RNase B, horseradish peroxidase and mannan-BSA) revealed the existence of high- and low-adhesive allelic variants, not only in Typhimurium but also in Enteritidis. Using two additional mutants of low-adhesive FimH protein from Enteritidis (Gly61Ala and Phe118Ser), SPR analysis pointed to Ser118 as the major determinant of the high-adhesive phenotype of type 1 fimbriae from Enteritidis. These studies demonstrated for the first time that the functional differences observed with whole fimbriated bacteria could be reproduced at the level of purified adhesin. They strongly suggest that the adhesive properties of type 1 fimbriae are determined only by structural differences in the FimH proteins and are not influenced by the fimbrial shaft on which the adhesin is located.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.039206-0
2010-06-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/6/1738.html?itemId=/content/journal/micro/10.1099/mic.0.039206-0&mimeType=html&fmt=ahah

References

  1. Abraham S. N., Sun D., Dale J. B., Beachey E. H. 1988; Conservation of the d-mannose-adhesion protein among type 1 fimbriated members of the family Enterobacteriaceae. Nature 336:682–684
    [Google Scholar]
  2. Allen-Vercoe E., Woodward M. J. 1999; The role of flagella, but not fimbriae, in the adherence of Salmonella enterica serotype Enteritidis to chick gut explants. J Med Microbiol 48:771–780
    [Google Scholar]
  3. Allen-Vercoe E., Sayers A. R., Woodward M. J. 1999; Virulence of Salmonella enterica serotype Enteritidis aflagellate and afimbriate mutants in a day-old chick model. Epidemiol Infect 122:395–402
    [Google Scholar]
  4. Aprikian P., Tchesnokova V., Kidd B., Yakovenko O., Yarov-Yarovoy V., Trinchina E., Vogel V., Thomas W., Sokurenko E. 2007; Interdomain interaction in the FimH adhesin of Escherichia coli regulates the affinity to mannose. J Biol Chem 282:23437–23446
    [Google Scholar]
  5. Barnhart M. M., Pinkner J. S., Soto G. E., Sauer F. G., Langermann S., Waksman G., Frieden C., Hultgren S. J. 2000; PapD-like chaperones provide the missing information for folding of pilin proteins. Proc Natl Acad Sci U S A 97:7709–7714
    [Google Scholar]
  6. Boddicker J. D., Ledeboer N. A., Jagnow J., Jones B. D., Clegg S. 2002; Differential binding to and biofilm formation on, HEp-2 cells by Salmonella enterica serovar Typhimurium is dependent upon allelic variation in the fimH gene of the fimH gene cluster. Mol Microbiol 45:1255–1265
    [Google Scholar]
  7. Choudhury D., Thompson A., Stojanoff V., Langermann S., Pinkner J., Hultgren S. J., Knight S. D. 1999; X-ray structure of the FimC-FimH chaperone-adhesin complex from uropathogenic Escherichia coli. Science 285:1061–1066
    [Google Scholar]
  8. De Buck J., Van Immerseel F., Meulemans G., Haesebrouck F., Ducatelle R. 2003; Adhesion of Salmonella enterica serotype Enteritidis isolates to chicken isthmal glandular secretions. Vet Microbiol 93:223–233
    [Google Scholar]
  9. Dibb-Fuller M. P., Woodward M. J. 2000; Contribution of fimbriae and flagella of Salmonella enteritidis to colonization and invasion of chicks. Avian Pathol 29:295–304
    [Google Scholar]
  10. Dibb-Fuller M. P., Allen-Vercoe E., Thorns C. J., Woodward M. J. 1999; Fimbriae- and flagella-mediated association with and invasion of cultured epithelial cells by Salmonella enteritidis. Microbiology 145:1023–1031
    [Google Scholar]
  11. Duguid J. P., Anderson E. S., Campbell I. 1966; Fimbriae and adhesive properties in salmonellae. J Pathol Bacteriol 92:107–138
    [Google Scholar]
  12. Duncan M. J., Mann E. L., Cohen M. S., Ofek I., Sharon N., Abraham S. N. 2005; The distinct binding specificities exhibited by enterobacterial type 1 fimbriae are determined by their fimbrial shafts. J Biol Chem 280:37707–37716
    [Google Scholar]
  13. Ewen S. W., Naughton P. J., Grant G., Sojka M., Allen-Vercoe E., Bardocz S., Thorns C. J., Pusztai A. 1997; Salmonella enterica var Typhimurium and Salmonella enterica var Enteritidis express type 1 fimbriae in the rat in vivo. FEMS Immunol Med Microbiol 18:185–192
    [Google Scholar]
  14. Firon N., Ofek I., Sharon N. 1983; Carbohydrate specificity of the surface lectins of Escherichia coli, Klebsiella pneumoniae and Salmonella typhimurium. Carbohydr Res 120:235–249
    [Google Scholar]
  15. Firon N., Ofek I., Sharon N. 1984; Carbohydrate-binding sites of the mannose-specific fimbrial lectins of Enterobacteria. Infect Immun 43:1088–1090
    [Google Scholar]
  16. Guo A., Lasaro M. A., Sirard J.-C., Kraehenbuhl P., Schifferli D. M. 2007; Adhesin-dependent binding and uptake of Salmonella enterica serovar Typhimurium by dendritic cells. Microbiology 153:1059–1069
    [Google Scholar]
  17. Hancox L. S., Yeh K. S., Clegg S. 1997; Construction and characterization of type 1 non-fimbriate and non-adhesive mutants of Salmonella typhimurium. FEMS Immunol Med Microbiol 19:289–296
    [Google Scholar]
  18. Jones C. H., Pinkner J. S., Roth R., Heuser J., Nicholes A. V., Abraham S. N., Hultgren S. J. 1995; FimH adhesin of type 1 pili is assembled into a fibrillar tip structure in the Enterobacteriaceae. Proc Natl Acad Sci U S A 92:2081–2085
    [Google Scholar]
  19. Kanska U., Budzynska R., Nevozhay D., Boratynski J. 2008; Preparation of mannan-protein conjugates using high-temperature glycation. Biotechnol Appl Biochem 49:57–64
    [Google Scholar]
  20. Kisiela D., Kiczak L., Kuźmińska M., Kuczkowski M., Franiczek R., Ugorski M. 2005a; Analysis of the fimH gene coding type 1 fimbriae adhesin of Salmonella enterica serovar Enteritidis. Med Welt 61:1259–1262
    [Google Scholar]
  21. Kisiela D., Sapeta A. M., Kuczkowski M., Stefaniak T., Wieliczko A., Ugorski M. 2005b; Characterization of FimH adhesins expressed by Salmonella enterica serovars Gallinarum biovars Gallinarum and Pullorum: reconstitution of mannose-binding properties by single amino acid substitution. Infect Immun 73:6187–6190
    [Google Scholar]
  22. Kisiela D., Laskowska A., Sapeta A., Kuczkowski M., Wieliczko A., Ugorski M. 2006; Functional characterization of the FimH adhesin from Salmonella enterica serovar Enteritidis. Microbiology 152:1337–1346
    [Google Scholar]
  23. Krogfelt K. A., Bergmans H., Klemm P. 1990; Direct evidence that the FimH protein is the adhesin of Escherichia coli type 1 fimbriae. Infect Immun 58:1995–1999
    [Google Scholar]
  24. Madison B., Ofek I., Clegg S., Abraham S. N. 1994; Type 1 fimbrial shafts of Escherichia coli and Klebsiella pneumoniae influence sugar-binding specificities of their FimH adhesins. Infect Immun 62:843–848
    [Google Scholar]
  25. Naughton P. J., Grant G., Bardocz S., Allen-Vercoe E., Woodward M. J., Pusztai A. 2001; Expression of type 1 fimbriae (SEF 21) of Salmonella enterica serotype Enteritidis in the early colonization of the rat intestine. J Med Microbiol 50:191–197
    [Google Scholar]
  26. Rajashekara G., Munir S., Alexeyev M. F., Halvorson D. A., Wells C. L., Nagaraja K. V. 2000; Pathogenic role of SEF14, SEF17, and SEF21 fimbriae in Salmonella enterica serovar Enteritidis infection of chickens. Appl Environ Microbiol 66:1759–1763
    [Google Scholar]
  27. Sokurenko E. V., Courtney H. S., Ohman D. E., Klemm P., Hasty D. L. 1994; FimH family of type 1 fimbrial adhesins: functional heterogeneity due to minor sequence variations among fimH genes. J Bacteriol 176:748–755
    [Google Scholar]
  28. Sokurenko E. V., Courtney H. S., Maslow J., Siitonen A., Hasty D. L. 1995; Quantitative differences in adhesiveness of type 1 fimbriated Escherichia coli due to structural differences in fimH genes. J Bacteriol 177:3680–3686
    [Google Scholar]
  29. Stahlhut S. G., Tchesnokova V., Struve C., Scott J. W., Chattopadhyay S., Yakovenko O., Aprikian P., Sokurenko E. V., Krogfelt K. A. 2009; Comparative structure-function analysis of mannose-specific FimH adhesins from Klebsiella pneumoniae and Escherichia coli. J Bacteriol 191:6592–6601
    [Google Scholar]
  30. Thankavel K., Shah A. H., Cohen M. S., Ikeda T., Lorenz R. G., Curtiss R., Abraham S. N. 1999; Molecular basis for the enterocyte tropism exhibited by Salmonella typhimurium type 1 fimbriae. J Biol Chem 274:5797–5809
    [Google Scholar]
  31. Thorns C. J. 1995; Salmonella fimbriae: novel antigens in the detection and control of Salmonella infections. Br Vet J 151:643–658
    [Google Scholar]
  32. Van der Merwe P. A., Barclay A. N. 1996; Analysis of cell-adhesion molecule interactions using surface plasmon resonance. Curr Opin Immunol 8:257–261
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.039206-0
Loading
/content/journal/micro/10.1099/mic.0.039206-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error