1887

Abstract

is a Gram-negative bacterium able to detoxify arsenic-contaminated environments by oxidizing arsenite [As(III)] to arsenate [As(V)] and by scavenging arsenic ions in an extracellular matrix. Its motility and colonization behaviour have been previously suggested to be influenced by arsenite. Using time-course confocal laser scanning microscopy, we investigated its biofilm development in the absence and presence of arsenite. Arsenite was shown to delay biofilm initiation in the wild-type strain; this was partly explained by its toxicity, which caused an increased growth lag time. However, this delayed adhesion step in the presence of arsenite was not observed in either a swimming motility defective mutant or an arsenite oxidase defective mutant; both strains displayed the wild-type surface properties and growth capacities. We propose that during the biofilm formation process arsenite acts on swimming motility as a result of the arsenite oxidase activity, preventing the switch between planktonic and sessile lifestyles. Our study therefore highlights the existence, under arsenite exposure, of a competition between swimming motility, resulting from arsenite oxidation, and biofilm initiation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.039313-0
2010-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/8/2336.html?itemId=/content/journal/micro/10.1099/mic.0.039313-0&mimeType=html&fmt=ahah

References

  1. Abernathy C. O., Liu Y. P., Longfellow D., Aposhian H. V., Beck B., Fowler B., Goyer R., Menzer R., Rossman T. other authors 1999; Arsenic: health effects, mechanisms of actions, and research issues. Environ Health Perspect 107:593–597
    [Google Scholar]
  2. Barraud N., Schleheck D., Klebensberger J., Webb J. S., Hassett D. J., Rice S. A., Kjelleberg S. 2009; Nitric oxide signaling in Pseudomonas aeruginosa biofilms mediates phosphodiesterase activity, decreased cyclic di-GMP levels, and enhanced dispersal. J Bacteriol 191:7333–7342
    [Google Scholar]
  3. Bellon-Fontaine M.-N., Rault J., van Oss C. J. 1996; Microbial adhesion to solvents: a novel method to determine the electron-donor/electron-acceptor or Lewis acid-base properties of microbial cells. Colloids Surf B Biointerfaces 7:47–53
    [Google Scholar]
  4. Carapito C., Muller D., Turlin E., Koechler S., Danchin A., Van Dorsselaer A., Leize-Wagner E., Bertin P. N., Lett M. C. 2006; Identification of genes and proteins involved in the pleiotropic response to arsenic stress in Caenibacter arsenoxydans, a metalloresistant beta-proteobacterium with an unsequenced genome. Biochimie 88:595–606
    [Google Scholar]
  5. Costerton J. W., Lewandowski Z., Caldwell D. E., Korber D. R., Lappin-Scott H. M. 1995; Microbial biofilms. Annu Rev Microbiol 49:711–745
    [Google Scholar]
  6. de Lorenzo V., Herrero M., Jakubzik U., Timmis K. N. 1990; Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J Bacteriol 172:6568–6572
    [Google Scholar]
  7. Eberl L., Molin S., Givskov M. 1999; Surface motility of Serratia liquefaciens MG1. J Bacteriol 181:1703–1712
    [Google Scholar]
  8. Flemming H. C., Wingender J. 2001; Relevance of microbial extracellular polymeric substances (EPSs). Part I: structural and ecological aspects. Water Sci Technol 43:1–8
    [Google Scholar]
  9. Harrison J. J., Ceri H., Turner R. J. 2007; Multimetal resistance and tolerance in microbial biofilms. Nat Rev Microbiol 5:928–938
    [Google Scholar]
  10. Harshey R. M. 2003; Bacterial motility on a surface: many ways to a common goal. Annu Rev Microbiol 57:249–273
    [Google Scholar]
  11. Hengge R. 2009; Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 7:263–273
    [Google Scholar]
  12. Jonas K., Edwards A. N., Ahmad I., Romeo T., Römling U., Melefors ö. 2010; Complex regulatory network encompassing the Csr, c-di-GMP and motility systems of Salmonella Typhimurium. Environ Microbiol 12:524–540
    [Google Scholar]
  13. Kirov S. M., Castrisios M., Shaw J. G. 2004; Aeromonas flagella (polar and lateral) are enterocyte adhesins that contribute to biofilm formation on surfaces. Infect Immun 72:1939–1945
    [Google Scholar]
  14. Klausen M., Aaes-Jorgensen A., Molin S., Tolker-Nielsen T. 2003a; Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Mol Microbiol 50:61–68
    [Google Scholar]
  15. Klausen M., Heydorn A., Ragas P., Lambertsen L., Aaes-Jorgensen A., Molin S., Tolker-Nielsen T. 2003b; Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 48:1511–1524
    [Google Scholar]
  16. Koechler S., Cleiss-Arnold J., Proux C., Sismeiro O., Dillies M. A., Goulhen-Chollet F., Hommais F., Lièvremont D., Arsène-Ploetze F. other authors 2010; Multiple controls affect arsenite oxidase gene expression in Herminiimonas arsenicoxydans. BMC Microbiol 10:53
    [Google Scholar]
  17. Kolter R., Greenberg E. P. 2006; Microbial sciences: the superficial life of microbes. Nature 441:300–302
    [Google Scholar]
  18. Lièvremont D., Bertin P. N., Lett M. C. 2009; Arsenic in contaminated waters: biogeochemical cycle, microbial metabolism and biotreatment processes. Biochimie 91:1229–1237
    [Google Scholar]
  19. Macnab R. M. 2004; Type III flagellar protein export and flagellar assembly. Biochim Biophys Acta 1694:207–217
    [Google Scholar]
  20. Muller D., Lievremont D., Simeonova D. D., Hubert J. C., Lett M. C. 2003; Arsenite oxidase aox genes from a metal-resistant beta-proteobacterium. J Bacteriol 185:135–141
    [Google Scholar]
  21. Muller D., Simeonova D. D., Riegel P., Mangenot S., Koechler S., Lièvremont D., Bertin P. N., Lett M. C. 2006; Herminiimonas arsenicoxydans sp. nov., a metalloresistant bacterium. Int J Syst Evol Microbiol 56:1765–1769
    [Google Scholar]
  22. Muller D., Medigue C., Koechler S., Barbe V., Barakat M., Talla E., Bonnefoy V., Krin E., Arsène-Ploetze F. other authors 2007; A tale of two oxidation states: bacterial colonization of arsenic-rich environments. PLoS Genet 3:e53
    [Google Scholar]
  23. Nejidat A., Saadi I., Ronen Z. 2008; Effect of flagella expression on adhesion of Achromobacter piechaudii to chalk surfaces. J Appl Microbiol 105:2009–2014
    [Google Scholar]
  24. Oremland R. S., Stolz J. F. 2003; The ecology of arsenic. Science 300:939–944
    [Google Scholar]
  25. O'Toole G., Kaplan H. B., Kolter R. 2000; Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79
    [Google Scholar]
  26. Pratt L. A., Kolter R. 1998; Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30:285–293
    [Google Scholar]
  27. Pratt J. T., Tamayo R., Tischler A. D., Camilli A. 2007; PilZ domain proteins bind cyclic diguanylate and regulate diverse processes in Vibrio cholerae. J Biol Chem 282:12860–12870
    [Google Scholar]
  28. Sauer K., Camper A. K., Ehrlich G. D., Costerton J. W., Davies D. G. 2002; Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184:1140–1154
    [Google Scholar]
  29. Todhanakasem T., Young G. M. 2008; Loss of flagellum-based motility by Listeria monocytogenes results in formation of hyperbiofilms. J Bacteriol 190:6030–6034
    [Google Scholar]
  30. Tolker-Nielsen T., Brinch U. C., Ragas P. C., Andersen J. B., Jacobsen C. S., Molin S. 2000; Development and dynamics of Pseudomonas sp. biofilms. J Bacteriol 182:6482–6489
    [Google Scholar]
  31. Verstraeten N., Braeken K., Debkumari B., Fauvart M., Fransaer J., Vermant J., Michiels J. 2008; Living on a surface: swarming and biofilm formation. Trends Microbiol 16:496–506
    [Google Scholar]
  32. Weeger W., Lièvremont D., Perret M., Lagarde F., Hubert J. C., Leroy M., Lett M. C. 1999; Oxidation of arsenite to arsenate by a bacterium isolated from an aquatic environment. Biometals 12:141–149
    [Google Scholar]
  33. Weiss S., Carapito C., Cleiss J., Koechler S., Turlin E., Coppee J. Y., Heymann M., Kugler V., Stauffert M. other authors 2009; Enhanced structural and functional genome elucidation of the arsenite-oxidizing strain Herminiimonas arsenicoxydans by proteomics data. Biochimie 91:192–203
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.039313-0
Loading
/content/journal/micro/10.1099/mic.0.039313-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error