1887

Abstract

is a Gram-negative opportunistic pathogen able to cause acute or chronic infections. Like all other species, has a large genome, >6 Mb, encoding more than 5000 proteins. Many proteins are localized in membranes, among them lipoproteins, which can be found tethered to the inner or the outer membrane. Lipoproteins are translocated from the cytoplasm and their N-terminal signal peptide is cleaved by the signal peptidase II, which recognizes a specific sequence called the lipobox just before the first cysteine of the mature lipoprotein. A majority of lipoproteins are transported to the outer membrane via the LolCDEAB system, while those having an avoidance signal remain in the inner membrane. In , the presence of an aspartate residue after the cysteine is sufficient to cause the lipoprotein to remain in the inner membrane, while in the situation is more complex and involves amino acids at position +3 and +4 after the cysteine. Previous studies indicated that there are 185 lipoproteins in , with a minority in the inner membrane. A reanalysis led to a reduction of this number to 175, while new retention signals could be predicted, increasing the percentage of inner-membrane lipoproteins to 20 %. About one-third (62 out of 175) of the lipoprotein genes are present in the 17 genomes sequenced, meaning that these genes are part of the core genome of the genus. Lipoproteins can be classified into families, including those outer-membrane proteins having a structural role or involved in efflux of antibiotics. Comparison of various microarray data indicates that exposure to epithelial cells or some antibiotics, or conversion to mucoidy, has a major influence on the expression of lipoprotein genes in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.040659-0
2010-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/9/2597.html?itemId=/content/journal/micro/10.1099/mic.0.040659-0&mimeType=html&fmt=ahah

References

  1. Aendekerk S., Diggle S. P., Song Z., Hoiby N., Cornelis P., Williams P., Camara M. 2005; The MexGHI-OpmD multidrug efflux pump controls growth, antibiotic susceptibility and virulence in Pseudomonas aeruginosa via 4-quinolone-dependent cell-to-cell communication. Microbiology 151:1113–1125
    [Google Scholar]
  2. Aspedon A., Palmer K., Whiteley M. 2006; Microarray analysis of the osmotic stress response in Pseudomonas aeruginosa. J Bacteriol 188:2721–2725
    [Google Scholar]
  3. Attila C., Ueda A., Wood T. K. 2008; PA2663 (PpyR) increases biofilm formation in Pseudomonas aeruginosa PAO1 through the psl operon and stimulates virulence and quorum-sensing phenotypes. Appl Microbiol Biotechnol 78:293–307
    [Google Scholar]
  4. Beck B. J., Downs D. M. 1999; A periplasmic location is essential for the role of the ApbE lipoprotein in thiamine synthesis in Salmonella typhimurium. J Bacteriol 181:7285–7290
    [Google Scholar]
  5. Berven F. S., Karlsen O. A., Straume A. H., Flikka K., Murrell J. C., Fjellbirkeland A., Lillehaug J. R., Eidhammer I., Jensen H. B. 2006; Analysing the outer membrane subproteome of Methylococcus capsulatus (Bath) using proteomics and novel biocomputing tools. Arch Microbiol 184:362–377
    [Google Scholar]
  6. Bodilis J., Barray S. 2006; Molecular evolution of the major outer-membrane protein gene ( oprF) of Pseudomonas. Microbiology 152:1075–1088
    [Google Scholar]
  7. Bodilis J., Ghysels B., Osayande J., Matthijs S., Pirnay J. P., Denayer S., De Vos D., Cornelis P. 2009; Distribution and evolution of ferripyoverdine receptors in Pseudomonas aeruginosa. Environ Microbiol 11:2123–2135
    [Google Scholar]
  8. Bouveret E., Derouiche R., Rigal A., Lloubes R., Lazdunski C., Benedetti H. 1995; Peptidoglycan-associated lipoprotein-TolB interaction. A possible key to explaining the formation of contact sites between the inner and outer membranes of Escherichia coli. J Biol Chem 270:11071–11077
    [Google Scholar]
  9. Braun V. 1975; Covalent lipoprotein from the outer membrane of Escherichia coli. Biochim Biophys Acta 415:335–377
    [Google Scholar]
  10. Callewaert L., Aertsen A., Deckers D., Vanoirbeek K. G., Vanderkelen L., Van Herreweghe J. M., Masschalck B., Nakimbugwe D., Robben J., Michiels C. W. 2008; A new family of lysozyme inhibitors contributing to lysozyme tolerance in gram-negative bacteria. PLoS Pathog 4:e1000019
    [Google Scholar]
  11. Chugani S., Greenberg E. P. 2007; The influence of human respiratory epithelia on Pseudomonas aeruginosa gene expression. Microb Pathog 42:29–35
    [Google Scholar]
  12. Cornelis P., Bouia A., Belarbi A., Guyonvarch A., Kammerer B., Hannaert V., Hubert J. C. 1989; Cloning and analysis of the gene for the major outer-membrane lipoprotein from Pseudomonas aeruginosa. Mol Microbiol 3:421–428
    [Google Scholar]
  13. Cornelis P., Sierra J. C., Lim A. Jr, Malur A., Tungpradabkul S., Tazka H., Leitão A., Martins C. V., di Perna C. other authors 1996; Development of new cloning vectors for the production of immunogenic outer membrane fusion proteins in Escherichia coli. Biotechnology (N Y) 14:203–208
    [Google Scholar]
  14. Cote-Sierra J., Jongert E., Bredan A., Gautam D. C., Parkhouse M., Cornelis P., De Baetselier P., Revets H. 1998; A new membrane-bound OprI lipoprotein expression vector. High production of heterologous fusion proteins in gram (−) bacteria and the implications for oral vaccination. Gene 221:25–34
    [Google Scholar]
  15. Damron F. H., Napper J., Teter M. A., Yu H. D. 2009; Lipotoxin F of Pseudomonas aeruginosa is an AlgU-dependent and alginate-independent outer membrane protein involved in resistance to oxidative stress and adhesion to A549 human lung epithelia. Microbiology 155:1028–1038
    [Google Scholar]
  16. De Vos D., Lim A. Jr, Pirnay J. P., Struelens M., Vandenvelde C., Duinslaeger L., Vanderkelen A., Cornelis P. 1997; Direct detection and identification of Pseudomonas aeruginosa in clinical samples such as skin biopsy specimens and expectorations by multiplex PCR based on two outer membrane lipoprotein genes,oprI and oprL. J Clin Microbiol 35:1295–1299
    [Google Scholar]
  17. De Vos D., Bouton C., Sarniguet A., De Vos P., Vauterin M., Cornelis P. 1998; Sequence diversity of the oprI gene, coding for major outer membrane lipoprotein I, among rRNA group I pseudomonads. J Bacteriol 180:6551–6556
    [Google Scholar]
  18. Dietrich L. E., Price-Whelan A., Petersen A., Whiteley M., Newman D. K. 2006; The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa. Mol Microbiol 61:1308–1321
    [Google Scholar]
  19. Dotsch A., Klawonn F., Jarek M., Scharfe M., Blocker H., Haussler S. 2010; Evolutionary conservation of essential and highly expressed genes in Pseudomonas aeruginosa. BMC Genomics 11:234
    [Google Scholar]
  20. Duchene M., Barron C., Schweizer A., Vonspecht B. U., Domdey H. 1989; Pseudomonas aeruginosa outer-membrane lipoprotein-I gene - molecular-cloning, sequence, and expression in Escherichia coli. J Bacteriol 171:4130–4137
    [Google Scholar]
  21. Firoved A. M., Boucher J. C., Deretic V. 2002; Global genomic analysis of AlgU ( σE)-dependent promoters (sigmulon) in Pseudomonas aeruginosa and implications for inflammatory processes in cystic fibrosis. J Bacteriol 184:1057–1064
    [Google Scholar]
  22. Firoved A. M., Ornatowski W., Deretic V. 2004; Microarray analysis reveals induction of lipoprotein genes in mucoid Pseudomonas aeruginosa: implications for inflammation in cystic fibrosis. Infect Immun 72:5012–5018
    [Google Scholar]
  23. Frisk A., Schurr J. R., Wang G., Bertucci D. C., Marrero L., Hwang S. H., Hassett D. J., Schurr M. J. 2004; Transcriptome analysis of Pseudomonas aeruginosa after interaction with human airway epithelial cells. Infect Immun 72:5433–5438
    [Google Scholar]
  24. Gooderham W. J., Gellatly S. L., Sanschagrin F., McPhee J. B., Bains M., Cosseau C., Levesque R. C., Hancock R. E. 2009; The sensor kinase PhoQ mediates virulence in Pseudomonas aeruginosa. Microbiology 155:699–711
    [Google Scholar]
  25. Hancock R. E., Brinkman F. S. 2002; Function of pseudomonas porins in uptake and efflux. Annu Rev Microbiol 56:17–38
    [Google Scholar]
  26. Hayashi S., Wu H. C. 1990; Lipoproteins in bacteria. J Bioenerg Biomembr 22:451–471
    [Google Scholar]
  27. Huang J. J., Petersen A., Whiteley M., Leadbetter J. R. 2006; Identification of QuiP, the product of gene PA1032, as the second acyl-homoserine lactone acylase of Pseudomonas aeruginosa PAO1. Appl Environ Microbiol 72:1190–1197
    [Google Scholar]
  28. Imperi F., Tiburzi F., Visca P. 2009; Molecular basis of pyoverdine siderophore recycling in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 106:20440–20445
    [Google Scholar]
  29. Julenius K., Pedersen A. G. 2006; Protein evolution is faster outside the cell. Mol Biol Evol 23:2039–2048
    [Google Scholar]
  30. Juncker A. S., Willenbrock H., Von Heijne G., Brunak S., Nielsen H., Krogh A. 2003; Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Sci 12:1652–1662
    [Google Scholar]
  31. Keiski C. L., Harwich M., Jain S., Neculai A. M., Yip P., Robinson H., Whitney J. C., Riley L., Burrows L. L. other authors 2010; AlgK is a TPR-containing protein and the periplasmic component of a novel exopolysaccharide secretin. Structure 18:265–273
    [Google Scholar]
  32. Kiho T., Nakayama M., Yasuda K., Miyakoshi S., Inukai M., Kogen H. 2003; Synthesis and antimicrobial activity of novel globomycin analogues. Bioorg Med Chem Lett 13:2315–2318
    [Google Scholar]
  33. Knowles T. J., Scott-Tucker A., Overduin M., Henderson I. R. 2009; Membrane protein architects: the role of the BAM complex in outer membrane protein assembly. Nat Rev Microbiol 7:206–214
    [Google Scholar]
  34. Koebnik R. 1995; Proposal for a peptidoglycan-associating alph α-helical motif in the C-terminal regions of some bacterial cell-surface proteins. Mol Microbiol 16:1269–1270
    [Google Scholar]
  35. Kohler T., Michea-Hamzehpour M., Henze U., Gotoh N., Curty L. K., Pechere J. C. 1997; Characterization of MexE-MexF-OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa. Mol Microbiol 23:345–354
    [Google Scholar]
  36. Kuchma S. L., Brothers K. M., Merritt J. H., Liberati N. T., Ausubel F. M., O'Toole G. A. 2007; BifA, a cyclic-di-GMP phosphodiesterase, inversely regulates biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. J Bacteriol 189:8165–8178
    [Google Scholar]
  37. Lewenza S., Gardy J. L., Brinkman F. S., Hancock R. E. 2005; Genome-wide identification of Pseudomonas aeruginosa exported proteins using a consensus computational strategy combined with a laboratory-based PhoA fusion screen. Genome Res 15:321–329
    [Google Scholar]
  38. Lewenza S., Mhlanga M. M., Pugsley A. P. 2008; Novel inner membrane retention signals in Pseudomonas aeruginosa lipoproteins. J Bacteriol 190:6119–6125
    [Google Scholar]
  39. Li X. Z., Nikaido H., Poole K. 1995; Role of mexA- mexB- oprM in antibiotic efflux in Pseudomonas aeruginosa. Antimicrob Agents Chemother 39:1948–1953
    [Google Scholar]
  40. Liang M. D., Bagchi A., Warren H. S., Tehan M. M., Trigilio J. A., Beasley-Topliffe L. K., Tesini B. L., Lazzaroni J. C., Fenton M. J., Hellman J. 2005; Bacterial peptidoglycan-associated lipoprotein: a naturally occurring Toll-like receptor 2 agonist that is shed into serum and has synergy with lipopolysaccharide. J Infect Dis 191:939–948
    [Google Scholar]
  41. Lim A., DeVos D., Brauns M., Mossialos D., Gaballa A., Qing D., Cornelis P. 1997; Molecular and immunological characterization of OprL, the 18 kDa outer-membrane peptidoglycan-associated lipoprotein (PAL) of Pseudomonas aeruginosa. Microbiology 143:1709–1716
    [Google Scholar]
  42. Linares J. F., Lopez J. A., Camafeita E., Albar J. P., Rojo F., Martinez J. L. 2005; Overexpression of the multidrug efflux pumps MexCD-OprJ and MexEF-OprN is associated with a reduction of type III secretion in Pseudomonas aeruginosa. J Bacteriol 187:1384–1391
    [Google Scholar]
  43. Llamas M. A., Rodriguez-Herva J. J., Hancock R. E., Bitter W., Tommassen J., Ramos J. L. 2003; Role of Pseudomonas putida tol-oprL gene products in uptake of solutes through the cytoplasmic membrane. J Bacteriol 185:4707–4716
    [Google Scholar]
  44. Lyczak J. B., Cannon C. L., Pier G. B. 2000; Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect 2:1051–1060
    [Google Scholar]
  45. Lyczak J. B., Cannon C. L., Pier G. B. 2002; Lung infections associated with cystic fibrosis. Clin Microbiol Rev 15:194–222
    [Google Scholar]
  46. Malone J. G., Jaeger T., Spangler C., Ritz D., Spang A., Arrieumerlou C., Kaever V., Landmann R., Jenal U. 2010; YfiBNR mediates cyclic di-GMP dependent small colony variant formation and persistence in Pseudomonas aeruginosa. PLoS Pathog 6:e1000804
    [Google Scholar]
  47. Masuda K., Matsuyama S., Tokuda H. 2002; Elucidation of the function of lipoprotein-sorting signals that determine membrane localization. Proc Natl Acad Sci U S A 99:7390–7395
    [Google Scholar]
  48. Meinnel T., Schmitt E., Mechulam Y., Blanquet S. 1992; Structural and biochemical characterization of the Escherichia coli argE gene product. J Bacteriol 174:2323–2331
    [Google Scholar]
  49. Meynard J. L., Barbut F., Guiguet M., Batisse D., Lalande V., Lesage D., Guiard-Schmid J. B., Petit J. C., Frottier J., Meyohas M. C. 1999; Pseudomonas aeruginosa infection in human immunodeficiency virus infected patients. J Infect 38:176–181
    [Google Scholar]
  50. Mima T., Sekiya H., Mizushima T., Kuroda T., Tsuchiya T. 2005; Gene cloning and properties of the RND-type multidrug efflux pumps MexPQ-OpmE and MexMN-OprM from Pseudomonas aeruginosa. Microbiol Immunol 49:999–1002
    [Google Scholar]
  51. Mima T., Joshi S., Gomez-Escalada M., Schweizer H. P. 2007; Identification and characterization of TriABC-OpmH, a triclosan efflux pump of Pseudomonas aeruginosa requiring two membrane fusion proteins. J Bacteriol 189:7600–7609
    [Google Scholar]
  52. Mima T., Kohira N., Li Y., Sekiya H., Ogawa W., Kuroda T., Tsuchiya T. 2009; Gene cloning and characteristics of the RND-type multidrug efflux pump MuxABC-OpmB possessing two RND components in Pseudomonas aeruginosa. Microbiology 155:3509–3517
    [Google Scholar]
  53. Mizuno T. 1979; Novel peptidoglycan-associated lipoprotein found in the cell-envelope of Pseudomonas aeruginosa and Escherichia coli. J Biochem 86:991–1000
    [Google Scholar]
  54. Murata T., Gotoh N., Nishino T. 2002; Characterization of outer membrane efflux proteins OpmE, OpmD and OpmB of Pseudomonas aeruginosa: molecular cloning and development of specific antisera. FEMS Microbiol Lett 217:57–63
    [Google Scholar]
  55. Muto A., Osawa S. 1987; The guanine and cytosine content of genomic DNA and bacterial evolution. Proc Natl Acad Sci U S A 84:166–169
    [Google Scholar]
  56. Nalca Y., Jansch L., Bredenbruch F., Geffers R., Buer J., Haussler S. 2006; Quorum-sensing antagonistic activities of azithromycin in Pseudomonas aeruginosa PAO1: a global approach. Antimicrob Agents Chemother 50:1680–1688
    [Google Scholar]
  57. Narita S., Tokuda H. 2007; Amino acids at positions 3 and 4 determine the membrane specificity of Pseudomonas aeruginosa lipoproteins. J Biol Chem 282:13372–13378
    [Google Scholar]
  58. Narita S., Tokuda H. 2009; Biochemical characterization of an ABC transporter LptBFGC complex required for the outer membrane sorting of lipopolysaccharides. FEBS Lett 583:2160–2164
    [Google Scholar]
  59. Narita S., Matsuyama S., Tokuda H. 2004; Lipoprotein trafficking in Escherichia coli. Arch Microbiol 182:1–6
    [Google Scholar]
  60. Ochsner U. A., Wilderman P. J., Vasil A. I., Vasil M. L. 2002; GeneChip expression analysis of the iron starvation response in Pseudomonas aeruginosa: identification of novel pyoverdine biosynthesis genes. Mol Microbiol 45:1277–1287
    [Google Scholar]
  61. Panmanee W., Gomez F., Witte D., Pancholi V., Britigan B. E., Hassett D. J. 2008; The peptidoglycan-associated lipoprotein OprL helps protect a Pseudomonas aeruginosa mutant devoid of the transactivator OxyR from hydrogen peroxide-mediated killing during planktonic and biofilm culture. J Bacteriol 190:3658–3669
    [Google Scholar]
  62. Parsons L. M., Lin F., Orban J. 2006; Peptidoglycan recognition by Pal, an outer membrane lipoprotein. Biochemistry 45:2122–2128
    [Google Scholar]
  63. Pirnay J. P., De Vos D., Cochez C., Bilocq F., Pirson J., Struelens M., Duinslaeger L., Cornelis P., Zizi M., Vanderkelen A. 2003; Molecular epidemiology of Pseudomonas aeruginosa colonization in a burn unit: persistence of a multidrug-resistant clone and a silver sulfadiazine-resistant clone. J Clin Microbiol 41:1192–1202
    [Google Scholar]
  64. Poole K., Gotoh N., Tsujimoto H., Zhao Q., Wada A., Yamasaki T., Neshat S., Yamagishi J., Li X. Z., Nishino T. 1996; Overexpression of the mexC- mexD- oprJ efflux operon in nfxB-type multidrug-resistant strains of Pseudomonas aeruginosa. Mol Microbiol 21:713–724
    [Google Scholar]
  65. Rao A. R., Laxova A., Farrell P. M., Barbieri J. T. 2009; Proteomic identification of OprL as a seromarker for initial diagnosis of Pseudomonas aeruginosa infection of patients with cystic fibrosis. J Clin Microbiol 47:2483–2488
    [Google Scholar]
  66. Ratjen F., Doring G. 2003; Cystic fibrosis. Lancet 361:681–689
    [Google Scholar]
  67. Rau H., Revets H., Cornelis P., Titzmann A., Ruggli N., McCullough K. C., Summerfield A. 2006; Efficacy and functionality of lipoprotein OprI from Pseudomonas aeruginosa as adjuvant for a subunit vaccine against classical swine fever. Vaccine 24:4757–4768
    [Google Scholar]
  68. Ravel J., Cornelis P. 2003; Genomics of pyoverdine-mediated iron uptake in pseudomonads. Trends Microbiol 11:195–200
    [Google Scholar]
  69. Rawling E. G., Brinkman F. S., Hancock R. E. 1998; Roles of the carboxy-terminal half of Pseudomonas aeruginosa major outer membrane protein OprF in cell shape, growth in low-osmolarity medium, and peptidoglycan association. J Bacteriol 180:3556–3562
    [Google Scholar]
  70. Reddy M. 2007; Role of FtsEX in cell division of Escherichia coli: viability of ftsEX mutants is dependent on functional SufI or high osmotic strength. J Bacteriol 189:98–108
    [Google Scholar]
  71. Reid C. W., Blackburn N. T., Clarke A. J. 2006; Role of arginine residues in the active site of the membrane-bound lytic transglycosylase B from Pseudomonas aeruginosa. Biochemistry 45:2129–2138
    [Google Scholar]
  72. Rodriguez-Herva J. J., Ramos J. L. 1996; Characterization of an OprL null mutant of Pseudomonas putida. J Bacteriol 178:5836–5840
    [Google Scholar]
  73. Rodriguez-Herva J. J., Ramos-Gonzalez M. I., Ramos J. L. 1996; The Pseudomonas putida peptidoglycan-associated outer membrane lipoprotein is involved in maintenance of the integrity of the cell envelope. J Bacteriol 178:1699–1706
    [Google Scholar]
  74. Roy P. H., Tetu S. G., Larouche A., Elbourne L., Tremblay S., Ren Q., Dodson R., Harkins D., Shay R. other authors 2010; Complete genome sequence of the multiresistant taxonomic outlier Pseudomonas aeruginosa PA7. PLoS One 5:e8842
    [Google Scholar]
  75. Ruiz N., Kahne D., Silhavy T. J. 2006; Advances in understanding bacterial outer-membrane biogenesis. Nat Rev Microbiol 4:57–66
    [Google Scholar]
  76. Sankaran K., Wu H. C. 1994; Lipid modification of bacterial prolipoprotein. Transfer of diacylglyceryl moiety from phosphatidylglycerol. J Biol Chem 269:19701–19706
    [Google Scholar]
  77. Schuster M., Lostroh C. P., Ogi T., Greenberg E. P. 2003; Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol 185:2066–2079
    [Google Scholar]
  78. Schuster M., Hawkins A. C., Harwood C. S., Greenberg E. P. 2004; The Pseudomonas aeruginosa RpoS regulon and its relationship to quorum sensing. Mol Microbiol 51:973–985
    [Google Scholar]
  79. Schweizer H. P. 2003; Efflux as a mechanism of resistance to antimicrobials in Pseudomonas aeruginosa and related bacteria: unanswered questions. Genet Mol Res 2:48–62
    [Google Scholar]
  80. Seydel A., Gounon P., Pugsley A. P. 1999; Testing the ‘+2 rule’ for lipoprotein sorting in the Escherichia coli cell envelope with a new genetic selection. Mol Microbiol 34:810–821
    [Google Scholar]
  81. Tamura K., Dudley J., Nei M., Kumar S. 2007; MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599
    [Google Scholar]
  82. Tanaka S. Y., Narita S., Tokuda H. 2007; Characterization of the Pseudomonas aeruginosa Lol system as a lipoprotein sorting mechanism. J Biol Chem 282:13379–13384
    [Google Scholar]
  83. Taniguchi N., Matsuyama S., Tokuda H. 2005; Mechanisms underlying energy-independent transfer of lipoproteins from LolA to LolB, which have similar unclosed β-barrel structures. J Biol Chem 280:34481–34488
    [Google Scholar]
  84. Teitzel G. M., Geddie A., De Long S. K., Kirisits M. J., Whiteley M., Parsek M. R. 2006; Survival and growth in the presence of elevated copper: transcriptional profiling of copper-stressed Pseudomonas aeruginosa. J Bacteriol 188:7242–7256
    [Google Scholar]
  85. Tian Z. X., Fargier E., Mac Aogain M., Adams C., Wang Y. P., O'Gara F. 2009; Transcriptome profiling defines a novel regulon modulated by the LysR-type transcriptional regulator MexT in Pseudomonas aeruginosa. Nucleic Acids Res 37:7546–7559
    [Google Scholar]
  86. Tokuda H. 2009; Biogenesis of outer membranes in Gram-negative bacteria. Biosci Biotechnol Biochem 73:465–473
    [Google Scholar]
  87. Uehara T., Dinh T., Bernhardt T. G. 2009; LytM-domain factors are required for daughter cell separation and rapid ampicillin-induced lysis in Escherichia coli. J Bacteriol 191:5094–5107
    [Google Scholar]
  88. van Oeffelen L., Cornelis P., Van Delm W., De Ridder F., De Moor B., Moreau Y. 2008; Detecting cis-regulatory binding sites for cooperatively binding proteins. Nucleic Acids Res 36:e46
    [Google Scholar]
  89. Winsor G. L., Van Rossum T., Lo R., Khaira B., Whiteside M. D., Hancock R. E., Brinkman F. S. 2009; Pseudomonas Genome Database: facilitating user-friendly, comprehensive comparisons of microbial genomes. Nucleic Acids Res 37:D483–D488
    [Google Scholar]
  90. Wood L. F., Leech A. J., Ohman D. E. 2006; Cell wall-inhibitory antibiotics activate the alginate biosynthesis operon in Pseudomonas aeruginosa: roles of sigma (AlgT) and the AlgW and Prc proteases. Mol Microbiol 62:412–426
    [Google Scholar]
  91. Yamaguchi K., Yu F., Inouye M. 1988; A single amino acid determinant of the membrane localization of lipoproteins in E. coli. Cell 53:423–432
    [Google Scholar]
  92. Yoneyama H., Maseda H., Kamiguchi H., Nakae T. 2000; Function of the membrane fusion protein, MexA, of the MexA, B-OprM efflux pump in Pseudomonas aeruginosa without an anchoring membrane. J Biol Chem 275:4628–4634
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.040659-0
Loading
/content/journal/micro/10.1099/mic.0.040659-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error