1887

Abstract

Among pathogenic strains of , the transcription factor has a pivotal role in the outcome of food-borne infections. This factor is activated by diverse stresses to provide general protection against multiple challenges, including those encountered during gastrointestinal passage. It also acts with the PrfA regulator to control virulence genes needed for entry into intestinal lumen cells. Environmental and nutritional signals modulate activity via a network that operates by the partner switching mechanism, in which protein interactions are controlled by serine phosphorylation. This network is well characterized in the related bacterium . A key difference in is the presence of only one input phosphatase, RsbU, instead of the two found in . Here, we aim to determine whether this sole phosphatase is required to convey physical, antibiotic and nutritional stress signals, or if additional pathways might exist. To that end, we constructed 10403S strains bearing single-copy, -dependent reporter fusions to determine the effects of an deletion under physiological conditions. All stresses tested, including acid, antibiotic, cold, ethanol, heat, osmotic and nutritional challenge, required RsbU to activate . This was of particular significance for cold stress activation, which occurs via a phosphatase-independent mechanism in . We also assayed the effects of the D80N substitution in the upstream RsbT regulator that activates RsbU. The mutant had a phenotype consistent with low and uninducible phosphatase activity, but nonetheless responded to nutritional stress. We infer that RsbU activity but not its induction is required for nutritional signalling, which would enter the network downstream from RsbU.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.041202-0
2010-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/9/2660.html?itemId=/content/journal/micro/10.1099/mic.0.041202-0&mimeType=html&fmt=ahah

References

  1. Akbar S., Kang C. M., Gaidenko T. A., Price C. W. 1997; Modulator protein RsbR regulates environmental signalling in the general stress pathway of Bacillus subtilis. Mol Microbiol 24:567–578
    [Google Scholar]
  2. Becker L. A., Cetin M. S., Hutkins R. W., Benson A. K. 1998; Identification of the gene encoding the alternative sigma factor σB from Listeria monocytogenes and its role in osmotolerance. J Bacteriol 180:4547–4554
    [Google Scholar]
  3. Begley M., Hill C., Ross R. P. 2006; Tolerance of Listeria monocytogenes to cell envelope-acting antimicrobial agents is dependent on SigB. Appl Environ Microbiol 72:2231–2234
    [Google Scholar]
  4. Brigulla M., Hoffmann T., Krisp A., Völker A., Bremer E., Völker U. 2003; Chill induction of the SigB-dependent general stress response in Bacillus subtilis and its contribution to low-temperature adaptation. J Bacteriol 185:4305–4314
    [Google Scholar]
  5. Brody M. S., Stewart V., Price C. W. 2009; Bypass suppression analysis maps the signalling pathway within a multidomain protein: the RsbP energy stress phosphatase 2C from Bacillus subtilis. Mol Microbiol 72:1221–1234
    [Google Scholar]
  6. Bugg T. D., Walsh C. T. 1992; Intracellular steps of bacterial cell wall peptidoglycan biosynthesis: enzymology, antibiotics, and antibiotic resistance. Nat Prod Rep 9:199–215
    [Google Scholar]
  7. Camilli A., Tilney L. G., Portnoy D. A. 1993; Dual roles of plcA in Listeria monocytogenes pathogenesis. Mol Microbiol 8:143–157
    [Google Scholar]
  8. Cao M., Wang T., Ye R., Helmann J. D. 2002; Antibiotics that inhibit cell wall biosynthesis induce expression of the Bacillus subtilis σW and σM regulons. Mol Microbiol 45:1267–1276
    [Google Scholar]
  9. Chan Y. C., Boor K. J., Wiedmann M. 2007; σB-dependent and σB-independent mechanisms contribute to transcription of Listeria monocytogenes cold stress genes during cold shock and cold growth. Appl Environ Microbiol 73:6019–6029
    [Google Scholar]
  10. Chaturongakul S., Boor K. J. 2004; RsbT and RsbV contribute to σB-dependent survival under environmental, energy, and intracellular stress conditions in Listeria monocytogenes. Appl Environ Microbiol 70:5349–5356
    [Google Scholar]
  11. Chaturongakul S., Boor K. J. 2006; σB activation under environmental and energy stress conditions in Listeria monocytogenes. Appl Environ Microbiol 72:5197–5203
    [Google Scholar]
  12. Chaturongakul S., Raengpradub S., Wiedmann M., Boor K. J. 2008; Modulation of stress and virulence in Listeria monocytogenes. Trends Microbiol 16:388–396
    [Google Scholar]
  13. Csonka L. N. 1989; Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev 53:121–147
    [Google Scholar]
  14. Delumeau O., Lewis R. J., Yudkin M. D. 2002; Protein–protein interactions that regulate the energy stress activation of σB in Bacillus subtilis. J Bacteriol 184:5583–5589
    [Google Scholar]
  15. Delumeau O., Chen C. C., Murray J. W., Yudkin M. D., Lewis R. J. 2006; High-molecular-weight complexes of RsbR and paralogues in the environmental signaling pathway of Bacillus subtilis. J Bacteriol 188:7885–7892
    [Google Scholar]
  16. Dutta R., Inouye M. 2000; GHKL, an emergent ATPase/kinase superfamily. Trends Biochem Sci 25:24–28
    [Google Scholar]
  17. Eymann C., Hecker M. 2001; Induction of σB-dependent general stress genes by amino acid starvation in a spo0H mutant of Bacillus subtilis. FEMS Microbiol Lett 199:221–227
    [Google Scholar]
  18. Gaidenko T. A., Kim T. J., Weigel A. L., Brody M. S., Price C. W. 2006; The blue-light receptor YtvA acts in the environmental stress signaling pathway of Bacillus subtilis. J Bacteriol 188:6387–6395
    [Google Scholar]
  19. Garner M. R., Njaa B. L., Wiedmann M., Boor K. J. 2006; Sigma B contributes to Listeria monocytogenes gastrointestinal infection but not to systemic spread in the guinea pig infection model. Infect Immun 74:876–886
    [Google Scholar]
  20. Glaser P., Frangeul L., Buchrieser C., Rusniok C., Amend A., Baquero F., Berche P., Bloecker H., Brandt P. other authors 2001; Comparative genomics of Listeria species. Science 294:849–852
    [Google Scholar]
  21. Hain T., Hossain H., Chatterjee S. S., Machata S., Volk U., Wagner S., Brors B., Haas S., Kuenne C. T. other authors 2008; Temporal transcriptomic analysis of the Listeria monocytogenes EGD-e σB regulon. BMC Microbiol 8:20
    [Google Scholar]
  22. Harold F. M. 1972; Conservation and transformation of energy by bacterial membranes. Bacteriol Rev 36:172–230
    [Google Scholar]
  23. Hecker M., Pané-Farré J., Völker U. 2007; SigB-dependent general stress response in Bacillus subtilis and related Gram-positive bacteria. Annu Rev Microbiol 61:215–236
    [Google Scholar]
  24. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. 1989; Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77:51–59
    [Google Scholar]
  25. Ho M. S., Carniol K., Losick R. 2003; Evidence in support of a docking model for the release of the transcription factor σF from the antisigma factor SpoIIAB in Bacillus subtilis. J Biol Chem 278:20898–20905
    [Google Scholar]
  26. Igoshin O. A., Brody M. S., Price C. W., Savageau M. A. 2007; Distinctive topologies of partner-switching signaling networks correlate with their physiological roles. J Mol Biol 369:1333–1352
    [Google Scholar]
  27. Kang C. M., Vijay K., Price C. W. 1998; Serine kinase activity of a Bacillus subtilis switch protein is required to transduce environmental stress signals but not to activate its target PP2C phosphatase. Mol Microbiol 30:189–196
    [Google Scholar]
  28. Kazmierczak M. J., Mithoe S. C., Boor K. J., Wiedmann M. 2003; Listeria monocytogenes σB regulates stress response and virulence functions. J Bacteriol 185:5722–5734
    [Google Scholar]
  29. Kim T. J., Gaidenko T. A., Price C. W. 2004; A multicomponent protein complex mediates environmental stress signaling in Bacillus subtilis. J Mol Biol 341:135–150
    [Google Scholar]
  30. Kim H. J., Mittal M., Sonenshein A. L. 2006; CcpC-dependent regulation of citB and lmo0847 in Listeria monocytogenes. J Bacteriol 188:179–190
    [Google Scholar]
  31. Lauer P., Chow M. Y., Loessner M. J., Portnoy D. A., Calendar R. 2002; Construction, characterization, and use of two Listeria monocytogenes site-specific phage integration vectors. J Bacteriol 184:4177–4186
    [Google Scholar]
  32. Losi A. 2004; The bacterial counterparts of plant phototropins. Photochem Photobiol Sci 3:566–574
    [Google Scholar]
  33. Marles-Wright J., Grant T., Delumeau O., van Duinen G., Firbank S. J., Lewis P. J., Murray J. W., Newman J. A., Quin M. B. other authors 2008; Molecular architecture of the “stressosome,” a signal integration and transduction hub. Science 322:92–96
    [Google Scholar]
  34. Mascher T., Margulis N. G., Wang T., Ye R. W., Helmann J. D. 2003; Cell wall stress responses in Bacillus subtilis: the regulatory network of the bacitracin stimulon. Mol Microbiol 50:1591–1604
    [Google Scholar]
  35. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  36. Milohanic E., Glaser P., Coppée J. Y., Frangeul L., Vega Y., Vázquez-Boland J. A., Kunst F., Cossart P., Buchrieser C. 2003; Transcriptome analysis of Listeria monocytogenes identifies three groups of genes differently regulated by PrfA. Mol Microbiol 47:1613–1625
    [Google Scholar]
  37. Mota-Meira M., LaPointe G., Lacroix C., Lavoie M. C. 2000; MICs of mutacin B-Ny266, Nisin A, vancomycin, and oxacillin against bacterial pathogens. Antimicrob Agents Chemother 44:24–29
    [Google Scholar]
  38. Palmer M. E., Wiedmann M., Boor K. J. 2009; σB and σL contribute to Listeria monocytogenes 10403S response to the antimicrobial peptides SdpC and nisin. Foodborne Pathog Dis 6:1057–1065
    [Google Scholar]
  39. Pané-Farré J., Lewis R. J., Stülke J. 2005; The RsbRST stress module in bacteria: a signalling system that may interact with different output modules. J Mol Microbiol Biotechnol 9:65–76
    [Google Scholar]
  40. Portnoy D. A., Jacks P. S., Hinrichs D. J. 1988; Role of hemolysin for the intracellular growth of Listeria monocytogenes. J Exp Med 167:1459–1471
    [Google Scholar]
  41. Price C. W. 2010; General stress response in Bacillus subtilis and related Gram positive bacteria. In Bacterial Stress Responses, 2nd edn. in press Edited by Storz G., Hengge R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  42. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  43. Shin J.-H., Kim J., Kim S.-M., Kim S., Lee J.-C., Ahn J.-M., Cho J.-Y. 2010; σB-dependent protein induction in Listeria monocytogenes during vancomycin stress. FEMS Microbiol Lett 308:94–100
    [Google Scholar]
  44. Simon R., Priefer U., Pühler A. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Nat Biotechnol 1:784–791
    [Google Scholar]
  45. Sleator R. D., Watson D., Hill C., Gahan C. G. 2009; The interaction between Listeria monocytogenes and the host gastrointestinal tract. Microbiology 155:2463–2475
    [Google Scholar]
  46. Smith K., Youngman P. 1992; Use of a new integrational vector to investigate compartment-specific expression of the Bacillus subtilis spoIIM gene. Biochimie 74:705–711
    [Google Scholar]
  47. Toledo-Arana A., Dussurget O., Nikitas G., Sesto N., Guet-Revillet H., Balestrino D., Loh E., Gripenland J., Tiensuu T. other authors 2009; The Listeria transcriptional landscape from saprophytism to virulence. Nature 459:950–956
    [Google Scholar]
  48. Vijay K., Brody M. S., Fredlund E., Price C. W. 2000; A PP2C phosphatase containing a PAS domain is required to convey signals of energy stress to the σB transcription factor of Bacillus subtilis. Mol Microbiol 35:180–188
    [Google Scholar]
  49. Voelker U., Voelker A., Maul B., Hecker M., Dufour A., Haldenwang W. G. 1995; Separate mechanisms activate σB of Bacillus subtilis in response to environmental and metabolic stresses. J Bacteriol 177:3771–3780
    [Google Scholar]
  50. Wiedemann I., Breukink E., van Kraaij C., Kuipers O. P., Bierbaum G., de Kruijff B., Sahl H. G. 2001; Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. J Biol Chem 276:1772–1779
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.041202-0
Loading
/content/journal/micro/10.1099/mic.0.041202-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error