1887

Abstract

The RcsCDB (Rcs) phosphorelay system is involved in the regulation of many envelope genes, such as those responsible for capsule synthesis, flagella production and O-antigen chain length, as well as in other cellular activities of several enteric bacteria. The system is composed of three proteins: the sensor RcsC, the response regulator RcsB, and the phospho-transfer intermediary protein RcsD. Previously, we reported two important aspects of this system: (a) gene expression is under the control of P and P promoters, and (b) gene transcription decreases when the bacteria reach high levels of the RcsB regulator. In the present work, we demonstrate that the RcsB protein represses gene expression by binding directly to the P promoter, negatively autoregulating the Rcs system. Furthermore, we report the physiological role of the RcsB regulator, which is able to modify bacterial swarming behaviour when expressed under the control of the P promoter.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.041319-0
2010-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/12/3513.html?itemId=/content/journal/micro/10.1099/mic.0.041319-0&mimeType=html&fmt=ahah

References

  1. Bader M. W., Navarre W. W., Shiau W., Nikaido H., Frye J. G., McClelland M., Fang F. C., Miller S. I. 2003; Regulation of Salmonella typhimurium virulence gene expression by cationic antimicrobial peptides. Mol Microbiol 50:219–230
    [Google Scholar]
  2. Beeston A. L., Surette M. G. 2002; pfs -dependent regulation of autoinducer 2 production in Salmonella enterica serovar Typhimurium. J Bacteriol 184:3450–3456
    [Google Scholar]
  3. Cano D. A., Dominguez-Bernal G., Tierrez A., Garcia-Del Portillo F., Casadesus J. 2002; Regulation of capsule synthesis and cell motility in Salmonella enterica by the essential gene igaA . Genetics 162:1513–1523
    [Google Scholar]
  4. Carballes F., Bertrand C., Bouche J. P., Cam K. 1999; Regulation of Escherichia coli cell division genes ftsA and ftsZ by the two-component system rcsC - rcsB . Mol Microbiol 34:442–450
    [Google Scholar]
  5. Chen M. H., Takeda S., Yamada H., Ishii Y., Yamashino T., Mizuno T. 2001; Characterization of the RcsC→YojN→RcsB phosphorelay signaling pathway involved in capsular synthesis in Escherichia coli . Biosci Biotechnol Biochem 65:2364–2367
    [Google Scholar]
  6. Clarke D. J., Holland I. B., Jacq A. 1997; Point mutations in the transmembrane domain of DjlA, a membrane-linked DnaJ-like protein, abolish its function in promoting colanic acid production via the Rcs signal transduction pathway. Mol Microbiol 25:933–944
    [Google Scholar]
  7. Costa C. S., Anton D. N. 2001; Role of the ftsA 1p promoter in the resistance of mucoid mutants of Salmonella enterica to mecillinam: characterization of a new type of mucoid mutant. FEMS Microbiol Lett 200:201–205
    [Google Scholar]
  8. Datsenko K. A., Wanner B. L. 2000; One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645
    [Google Scholar]
  9. Davis R. W., Bolstein D., Roth J. R. 1980 Advanced Bacterial Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  10. Delgado M. A., Mouslim C., Groisman E. A. 2006; The PmrA/PmrB and RcsC/YojN/RcsB systems control expression of the Salmonella O-antigen chain length determinant. Mol Microbiol 60:39–50
    [Google Scholar]
  11. Erickson K. D., Detweiler C. S. 2006; The Rcs phosphorelay system is specific to enteric pathogens/commensals and activates ydeI , a gene important for persistent Salmonella infection of mice. Mol Microbiol 62:883–894
    [Google Scholar]
  12. Ferrières L., Clarke D. J. 2003; The RcsC sensor kinase is required for normal biofilm formation in Escherichia coli K-12 and controls the expression of a regulon in response to growth on a solid surface. Mol Microbiol 50:1665–1682
    [Google Scholar]
  13. Fields P. I., Swanson R. V., Haidaris C. G., Heffron F. 1986; Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc Natl Acad Sci U S A 83:5189–5193
    [Google Scholar]
  14. Francez-Charlot A., Laugel B., Van Gemert A., Dubarry N., Wiorowski F., Castanie-Cornet M. P., Gutierrez C., Cam K. 2003; RcsCDB His-Asp phosphorelay system negatively regulates the flhDC operon in Escherichia coli . Mol Microbiol 49:823–832
    [Google Scholar]
  15. Guan C. D., Wanner B., Inouye H. 1983; Analysis of regulation of phoB expression using a phoB - cat fusion. J Bacteriol 156:710–717
    [Google Scholar]
  16. Harshey R. M. 2003; Bacterial motility on a surface: many ways to a common goal. Annu Rev Microbiol 57:249–273
    [Google Scholar]
  17. Huang Y. H., Ferrières L., Clarke D. J. 2006; The role of the Rcs phosphorelay in Enterobacteriaceae . Res Microbiol 157:206–212
    [Google Scholar]
  18. Ikeda J. S., Schmitt C. K., Darnell S. C., Watson P. R., Bispham J., Wallis T. S., Weinstein D. L., Metcalf E. S., Adams P. other authors 2001; Flagellar phase variation of Salmonella enterica serovar Typhimurium contributes to virulence in the murine typhoid infection model but does not influence Salmonella -induced enteropathogenesis. Infect Immun 69:3021–3030
    [Google Scholar]
  19. Kalir S., Mangan S., Alon U. 2005; A coherent feed-forward loop with a SUM input function prolongs flagella expression in Escherichia coli . Mol Syst Biol 1; 2005.0006
  20. Kelley W. L., Georgopoulos C. 1997; Positive control of the two-component RcsC/B signal transduction network by DjlA: a member of the DnaJ family of molecular chaperones in Escherichia coli . Mol Microbiol 25:913–931
    [Google Scholar]
  21. Kim W., Surette M. G. 2004; Metabolic differentiation in actively swarming Salmonella . Mol Microbiol 54:702–714
    [Google Scholar]
  22. Majdalani N., Gottesman S. 2005; The Rcs phosphorelay: a complex signal transduction system. Annu Rev Microbiol 59:379–405
    [Google Scholar]
  23. Mariscotti J. F., Garcia-del Portillo F. 2009; Genome expression analyses revealing the modulation of the Salmonella Rcs regulon by the attenuator IgaA. J Bacteriol 191:1855–1867
    [Google Scholar]
  24. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  25. Mouslim C., Groisman E. A. 2003; Control of the Salmonella ugd gene by three two-component regulatory systems. Mol Microbiol 47:335–344
    [Google Scholar]
  26. Mouslim C., Latifi T., Groisman E. A. 2003; Signal-dependent requirement for the co-activator protein RcsA in transcription of the RcsB-regulated ugd gene. J Biol Chem 278:50588–50595
    [Google Scholar]
  27. Mouslim C., Delgado M., Groisman E. A. 2004; Activation of the RcsC/YojN/RcsB phosphorelay system attenuates Salmonella virulence. Mol Microbiol 54:386–395
    [Google Scholar]
  28. Pescaretti M. M., Morero R., Delgado M. A. 2009; Identification of a new promoter for the response regulator rcsB expression in Salmonella enterica serovar Typhimurium. FEMS Microbiol Lett 300:165–173
    [Google Scholar]
  29. Ronen M., Rosenberg R., Shraiman B. I., Alon U. 2002; Assigning numbers to the arrows: parameterizing a gene regulation network by using accurate expression kinetics. Proc Natl Acad Sci U S A 99:10555–10560
    [Google Scholar]
  30. Rosenfeld N., Elowitz M. B., Alon U. 2002; Negative autoregulation speeds the response times of transcription networks. J Mol Biol 323:785–793
    [Google Scholar]
  31. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  32. Sanderson K. E., Hessel A., Rudd K. E. 1995; Genetic map of Salmonella typhimurium . , VIII edition. Microbiol Rev 59241–303
    [Google Scholar]
  33. Soncini F. C., Vescovi E. G., Groisman E. A. 1995; Transcriptional autoregulation of the Salmonella typhimurium phoPQ operon. J Bacteriol 177:4364–4371
    [Google Scholar]
  34. Stibitz S., Miller J. F. 1994; Coordinate regulation of virulence in Bordetella pertussis mediated by the vir ( bvg ) locus. In Molecular Genetics of Bacterial Pathogenesis pp 407–422 Edited by Miller V. L., Kaper J. B., Portney D. A., Isberg R. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  35. Stout V., Gottesman S. 1990; RcsB and RcsC: a two-component regulator of capsule synthesis in Escherichia coli . J Bacteriol 172:659–669
    [Google Scholar]
  36. Takeda S., Fujisawa Y., Matsubara M., Aiba H., Mizuno T. 2001; A novel feature of the multistep phosphorelay in Escherichia coli : a revised model of the RcsC → YojN → RcsB signalling pathway implicated in capsular synthesis and swarming behaviour. Mol Microbiol 40:440–450
    [Google Scholar]
  37. Toguchi A., Siano M., Burkart M., Harshey R. M. 2000; Genetics of swarming motility in Salmonella enterica serovar Typhimurium: critical role for lipopolysaccharide. J Bacteriol 182:6308–6321
    [Google Scholar]
  38. Virlogeux I., Waxin H., Ecobichon C., Lee J. O., Popoff M. Y. 1996; Characterization of the rcsA and rcsB genes from Salmonella typhi : rcsB through tviA is involved in regulation of Vi antigen synthesis. J Bacteriol 178:1691–1698
    [Google Scholar]
  39. Wehland M., Bernhard F. 2000; The RcsAB box. Characterization of a new operator essential for the regulation of exopolysaccharide biosynthesis in enteric bacteria. J Biol Chem 275:7013–7020
    [Google Scholar]
  40. Winans S. C., Mantis N. J., Chen C. Y., Chang C. H., Han D. C. 1994; Host recognition by the VirA, VirG two-component regulatory proteins of Agrobacterium tumefaciens . Res Microbiol 145:461–473
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.041319-0
Loading
/content/journal/micro/10.1099/mic.0.041319-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error