1887

Abstract

Heptose-containing oligosaccharides (OSs) are found in the outer core of the lipopolysaccharide (LPS) of a subset of non-typable (NT) strains. Candidate genes for the addition of either ----heptose (-Hep) or ----heptose (-Hep) and subsequent hexose sugars to these OSs have been identified from the recently completed genome sequences available for NT strains. and are two sets of related genes in which has homology to genes encoding glycosyltransferases and to genes encoding heptosyltransferases. Each set of genes is variably present across NT strains and is located in a region of the genome with an alternative gene organization between strains that contributes to LPS heterogeneity. Dependent upon the strain background, the LPS phenotype, structure and serum resistance of strains mutated in these genes were altered when compared with the relevant parent strain. Our studies confirm that and usually encode -heptosyl- and -heptosyl transferases, respectively, and that encode glycosyltransferases that play a role in OS extensions of NT LPS.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.041780-0
2010-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/11/3421.html?itemId=/content/journal/micro/10.1099/mic.0.041780-0&mimeType=html&fmt=ahah

References

  1. Anderson P., Johnston R. B. Jr, Smith D. H. 1972; Human serum activities against Hemophilus influenzae, type b. J Clin Invest 51:31–38
    [Google Scholar]
  2. Bouchet V., Hood D. W., Li J., Brisson J. R., Randle G. A., Martin A., Li Z., Goldstein R., Schweda E. K. other authors 2003; Host-derived sialic acid is incorporated into Haemophilus influenzae lipopolysaccharide and is a major virulence factor in experimental otitis media. Proc Natl Acad Sci U S A 100:8898–8903
    [Google Scholar]
  3. Cody A. J., Field D., Feil E. J., Stringer S., Deadman M. E., Tsolaki A. G., Gratz B., Bouchet V., Goldstein R. other authors 2003; High rates of recombination in otitis media isolates of non-typeable Haemophilus influenzae. Infect Genet Evol 3:57–66
    [Google Scholar]
  4. Danner D. B., Pifer M. L. 1982; Plasmid cloning vectors resistant to ampicillin and tetracycline which can replicate in both E. coli and Haemophilus cells. Gene 18:101–105
    [Google Scholar]
  5. Deadman M. E., Lundström S. L., Schweda E. K., Moxon E. R., Hood D. W. 2006; Specific amino acids of the glycosyltransferase LpsA direct the addition of glucose or galactose to the terminal inner core heptose of Haemophilus influenzae lipopolysaccharide via alternative linkages. J Biol Chem 281:29455–29467
    [Google Scholar]
  6. Deadman M. E., Hermant P., Engskog M., Makepeace K., Moxon E. R., Schweda E. K., Hood D. W. 2009; Lex2B, a phase-variable glycosyltransferase, adds either a glucose or a galactose to Haemophilus influenzae lipopolysaccharide. Infect Immun 77:2376–2384
    [Google Scholar]
  7. Erwin A. L., Nelson K. L., Mhlanga-Mutangadura T., Bonthuis P. J., Geelhood J. L., Morlin G., Unrath W. C., Campos J., Crook D. W. other authors 2005; Characterization of genetic and phenotypic diversity of invasive nontypeable Haemophilus influenzae. Infect Immun 73:5853–5863
    [Google Scholar]
  8. Erwin A. L., Allen S., Ho D. K., Bonthuis P. J., Jarisch J., Nelson K. L., Tsao D. L., Unrath W. C., Watson M. E. Jr other authors 2006a; Role of lgtC in resistance of nontypeable Haemophilus influenzae strain R2866 to human serum. Infect Immun 74:6226–6235
    [Google Scholar]
  9. Erwin A. L., Bonthuis P. J., Geelhood J. L., Nelson K. L., McCrea K. W., Gilsdorf J. R., Smith A. L. 2006b; Heterogeneity in tandem octanucleotides within Haemophilus influenzae lipopolysaccharide biosynthetic gene losA affects serum resistance. Infect Immun 74:3408–3414
    [Google Scholar]
  10. Fleischmann R. D., Adams M. D., White O., Clayton R. A., Kirkness E. F., Kerlavage A. R., Bult C. J., Tomb J. F., Dougherty B. A. other authors 1995; Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512
    [Google Scholar]
  11. Fox K. L., Cox A. D., Gilbert M., Wakarchuk W. W., Li J., Makepeace K., Richards J. C., Moxon E. R., Hood D. W. 2006; Identification of a bifunctional lipopolysaccharide sialyltransferase in Haemophilus influenzae: incorporation of disialic acid. J Biol Chem 281:40024–40032
    [Google Scholar]
  12. Fox K. L., Li J., Schweda E. K., Vitiazeva V., Makepeace K., Jennings M. P., Moxon E. R., Hood D. W. 2008; Duplicate copies of lic1 direct the addition of multiple phosphocholine residues in the lipopolysaccharide of Haemophilus influenzae. Infect Immun 76:588–600
    [Google Scholar]
  13. Gulin S., Pupo E., Schweda E. K., Hardy E. 2003; Linking mass spectrometry and slab-polyacrylamide gel electrophoresis by passive elution of lipopolysaccharides from reverse-stained gels: analysis of gel-purified lipopolysaccharides from Haemophilus influenzae strain Rd. Anal Chem 75:4918–4924
    [Google Scholar]
  14. Harrison A., Dyer D. W., Gillaspy A., Ray W. C., Mungur R., Carson M. B., Zhong H., Gipson J., Gipson M. other authors 2005; Genomic sequence of an otitis media isolate of nontypeable Haemophilus influenzae: comparative study with H. influenzae serotype d, strain KW20. J Bacteriol 187:4627–4636
    [Google Scholar]
  15. Herriott R. M., Meyer E. M., Vogt M. 1970; Defined nongrowth media for stage II development of competence in Haemophilus influenzae. J Bacteriol 101:517–524
    [Google Scholar]
  16. High N. J., Jennings M. P., Moxon E. R. 1996; Tandem repeats of the tetramer 5′-CAAT-3′ present in lic2A are required for phase variation but not lipopolysaccharide biosynthesis in Haemophilus influenzae. Mol Microbiol 20:165–174
    [Google Scholar]
  17. Hood D. W., Deadman M. E., Allen T., Masoud H., Martin A., Brisson J. R., Fleischmann R., Venter J. C., Richards J. C., Moxon E. R. 1996a; Use of the complete genome sequence information of Haemophilus influenzae strain Rd to investigate lipopolysaccharide biosynthesis. Mol Microbiol 22:951–965
    [Google Scholar]
  18. Hood D. W., Deadman M. E., Jennings M. P., Bisercic M., Fleischmann R. D., Venter J. C., Moxon E. R. 1996b; DNA repeats identify novel virulence genes in Haemophilus influenzae. Proc Natl Acad Sci U S A 93:11121–11125
    [Google Scholar]
  19. Hood D. W., Makepeace K., Deadman M. E., Rest R. F., Thibault P., Martin A., Richards J. C., Moxon E. R. 1999; Sialic acid in the lipopolysaccharide of Haemophilus influenzae: strain distribution, influence on serum resistance and structural characterization. Mol Microbiol 33:679–692
    [Google Scholar]
  20. Hood D. W., Cox A. D., Wakarchuk W. W., Schur M., Schweda E. K., Walsh S. L., Deadman M. E., Martin A., Moxon E. R., Richards J. C. 2001; Genetic basis for expression of the major globotetraose-containing lipopolysaccharide from H. influenzae strain Rd (RM118). Glycobiology 11:957–967
    [Google Scholar]
  21. Hood D. W., Deadman M. E., Cox A. D., Makepeace K., Martin A., Richards J. C., Moxon E. R. 2004a; Three genes, lgtF, lic2C and lpsA, have a primary role in determining the pattern of oligosaccharide extension from the inner core of Haemophilus influenzae LPS. Microbiology 150:2089–2097
    [Google Scholar]
  22. Hood D. W., Randle G., Cox A. D., Makepeace K., Li J., Schweda E. K., Richards J. C., Moxon E. R. 2004b; Biosynthesis of cryptic lipopolysaccharide glycoforms in Haemophilus influenzae involves a mechanism similar to that required for O-antigen synthesis. J Bacteriol 186:7429–7439
    [Google Scholar]
  23. Houliston R. S., Koga M., Li J., Jarrell H. C., Richards J. C., Vitiazeva V., Schweda E. K., Yuki N., Gilbert M. 2007; A Haemophilus influenzae strain associated with Fisher syndrome expresses a novel disialylated ganglioside mimic. Biochemistry 46:8164–8171
    [Google Scholar]
  24. Lundström S. L., Li J., Deadman M. E., Hood D. W., Moxon E. R., Schweda E. K. 2008; Structural analysis of the lipopolysaccharide from nontypeable Haemophilus influenzae strain R2846. Biochemistry 47:6025–6038
    [Google Scholar]
  25. Månsson M., Hood D. W., Moxon E. R., Schweda E. K. 2003a; Structural characterization of a novel branching pattern in the lipopolysaccharide from nontypeable Haemophilus influenzae. Eur J Biochem 270:2979–2991
    [Google Scholar]
  26. Månsson M., Hood D. W., Moxon E. R., Schweda E. K. 2003b; Structural diversity in lipopolysaccharide expression in nontypeable Haemophilus influenzae. Identification of l-glycerol-d-manno-heptose in the outer-core region in three clinical isolates. Eur J Biochem 270:610–624
    [Google Scholar]
  27. Patrick C. C., Kimura A., Jackson M. A., Hermanstorfer L., Hood A., McCracken G. H. Jr, Hansen E. J. 1987; Antigenic characterization of the oligosaccharide portion of the lipooligosaccharide of nontypable Haemophilus influenzae. Infect Immun 55:2902–2911
    [Google Scholar]
  28. Pettigrew M. M., Foxman B., Marrs C. F., Gilsdorf J. R. 2002; Identification of the lipooligosaccharide biosynthesis gene lic2B as a putative virulence factor in strains of nontypeable Haemophilus influenzae that cause otitis media. Infect Immun 70:3551–3556
    [Google Scholar]
  29. Phillips N. J., Apicella M. A., Griffiss J. M., Gibson B. W. 1992; Structural characterization of the cell surface lipooligosaccharides from a nontypable strain of Haemophilus influenzae. Biochemistry 31:4515–4526
    [Google Scholar]
  30. Post D. M., Munson R. S. Jr, Baker B., Zhong H., Bozue J. A., Gibson B. W. 2007; Identification of genes involved in the expression of atypical lipooligosaccharide structures from a second class of Haemophilus ducreyi. Infect Immun 75:113–121
    [Google Scholar]
  31. Preston A., Maskell D., Johnson A., Moxon E. R. 1996; Altered lipopolysaccharide characteristic of the I69 phenotype in Haemophilus influenzae results from mutations in a novel gene, isn. J Bacteriol 178:396–402
    [Google Scholar]
  32. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  33. Schweda E. K., Richards J. C., Hood D. W., Moxon E. R. 2007; Expression and structural diversity of the lipopolysaccharide of Haemophilus influenzae: implication in virulence. Int J Med Microbiol 297:297–306
    [Google Scholar]
  34. Schweda E. K., Twelkmeyer B., Li J. 2008; Profiling structural elements of short-chain lipopolysaccharide of non-typeable Haemophilus influenzae. Innate Immun 14:199–211
    [Google Scholar]
  35. Tullius M. V., Phillips N. J., Scheffler N. K., Samuels N. M., Munson R. S. Jr, Hansen E. J., Stevens-Riley M., Campagnari A. A., Gibson B. W. 2002; The lbgAB gene cluster of Haemophilus ducreyi encodes a β-1,4-galactosyltransferase and an α-1,6-dd-heptosyltransferase involved in lipooligosaccharide biosynthesis. Infect Immun 70:2853–2861
    [Google Scholar]
  36. Weiser J. N., Love J. M., Moxon E. R. 1989; The molecular mechanism of phase variation of H. influenzae lipopolysaccharide. Cell 59:657–665
    [Google Scholar]
  37. Zamze S. E., Moxon E. R. 1987; Composition of the lipopolysaccharide from different capsular serotype strains of Haemophilus influenzae. J Gen Microbiol 133:1443–1451
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.041780-0
Loading
/content/journal/micro/10.1099/mic.0.041780-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error