1887

Abstract

Here, we transcriptionally and phenotypically characterized the gene from . Northern blot analysis identified a monocistronic mRNA strongly induced at 48 and 50 °C. analysis identified that the gene encodes a protein of 868 aa with a predicted molecular mass of approximately 98 kDa, presenting two conserved ATP-binding domains. Sequence analysis also identified a CtsR-binding box upstream of the putative −10 sequence, and inactivation of the gene resulted in an approximately 2-log increase in mRNA expression, confirming ClpB as a member of the CtsR regulon. While expression of was induced by heat stress, a Δ strain grew relatively well under many different stressful conditions, including elevated temperatures. However, expression of ClpB appears to play a major role in induced thermotolerance and in pathogenesis, as assessed by using the virulence model.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.041897-0
2011-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/3/656.html?itemId=/content/journal/micro/10.1099/mic.0.041897-0&mimeType=html&fmt=ahah

References

  1. Abranches J., Candella M. M., Wen Z. T., Baker H. V., Burne R. A. 2006; Different roles of EIIABMan and EIIGlc in regulation of energy metabolism, biofilm development, and competence in Streptococcus mutans . J Bacteriol 188:3748–3756
    [Google Scholar]
  2. Ahn S. J., Lemos J. A., Burne R. A. 2005; Role of HtrA in growth and competence of Streptococcus mutans UA159. J Bacteriol 187:3028–3038
    [Google Scholar]
  3. Bergin D., Reeves E. P., Renwick J., Wientjes F. B., Kavanagh K. 2005; Superoxide production in Galleria mellonella hemocytes: identification of proteins homologous to the NADPH oxidase complex of human neutrophils. Infect Immun 73:4161–4170
    [Google Scholar]
  4. Bryan E. M., Bae T., Kleerebezem M., Dunny G. M. 2000; Improved vectors for nisin-controlled expression in Gram-positive bacteria. Plasmid 44:183–190
    [Google Scholar]
  5. Capestany C. A., Tribble G. D., Maeda K., Demuth D. R., Lamont R. J. 2008; Role of the Clp system in stress tolerance, biofilm formation, and intracellular invasion in Porphyromonas gingivalis . J Bacteriol 190:1436–1446
    [Google Scholar]
  6. Chastanet A., Msadek T. 2003; clpP of Streptococcus salivarius is a novel member of the dually regulated class of stress response genes in Gram-positive bacteria. J Bacteriol 185:683–687
    [Google Scholar]
  7. Chastanet A., Prudhomme M., Claverys J. P., Msadek T. 2001; Regulation of Streptococcus pneumoniae clp genes and their role in competence development and stress survival. J Bacteriol 183:7295–7307
    [Google Scholar]
  8. Chastanet A., Fert J., Msadek T. 2003; Comparative genomics reveal novel heat shock regulatory mechanisms in Staphylococcus aureus and other Gram-positive bacteria. Mol Microbiol 47:1061–1073
    [Google Scholar]
  9. Chastanet A., Derre I., Nair S., Msadek T. 2004; clpB , a novel member of the Listeria monocytogenes CtsR regulon, is involved in virulence but not in general stress tolerance. J Bacteriol 186:1165–1174
    [Google Scholar]
  10. Clarke A. K., Eriksson M. J. 2000; The truncated form of the bacterial heat shock protein ClpB/HSP100 contributes to development of thermotolerance in the cyanobacterium Synechococcus sp. strain PCC 7942. J Bacteriol 182:7092–7096
    [Google Scholar]
  11. Derré I., Rapoport G., Msadek T. 1999; CtsR, a novel regulator of stress and heat shock response, controls clp and molecular chaperone gene expression in Gram-positive bacteria. Mol Microbiol 31:117–131
    [Google Scholar]
  12. Doyle S. M., Hoskins J. R., Wickner S. 2007; Collaboration between the ClpB AAA+ remodeling protein and the DnaK chaperone system. Proc Natl Acad Sci U S A 104:11138–11144
    [Google Scholar]
  13. Eriksson M. J., Clarke A. K. 1996; The heat shock protein ClpB mediates the development of thermotolerance in the cyanobacterium Synechococcus sp. strain PCC 7942. J Bacteriol 178:4839–4846
    [Google Scholar]
  14. Eriksson M. J., Clarke A. K. 2000; The Escherichia coli heat shock protein ClpB restores acquired thermotolerance to a cyanobacterial clpB deletion mutant. Cell Stress Chaperones 5:255–264
    [Google Scholar]
  15. Fisher K., Phillips C. 2009; In vitro inhibition of vancomycin-susceptible and vancomycin-resistant Enterococcus faecium and E. faecalis in the presence of citrus essential oils. Br J Biomed Sci 66:180–185
    [Google Scholar]
  16. Flahaut S., Benachour A., Giard J. C., Boutibonnes P., Auffray Y. 1996a; Defense against lethal treatments and protein synthesis induced by NaCl in Enterococcus faecalis ATCC 19433. Arch Microbiol 165:317–324
    [Google Scholar]
  17. Flahaut S., Hartke A., Giard J. C., Benachour A., Boutibonnes P., Auffray Y. 1996b; Relationship between stress response toward bile salts, acid and heat treatment in Enterococcus faecalis . FEMS Microbiol Lett 138:49–54
    [Google Scholar]
  18. Flahaut S., Hartke A., Giard J. C., Auffray Y. 1997; Alkaline stress response in Enterococcus faecalis : adaptation, cross-protection, and changes in protein synthesis. Appl Environ Microbiol 63:812–814
    [Google Scholar]
  19. Frees D., Chastanet A., Qazi S., Sorensen K., Hill P., Msadek T., Ingmer H. 2004; Clp ATPases are required for stress tolerance, intracellular replication and biofilm formation in Staphylococcus aureus . Mol Microbiol 54:1445–1462
    [Google Scholar]
  20. Giard J. C., Hartke A., Flahaut S., Benachour A., Boutibonnes P., Auffray Y. 1997; Glucose starvation response in Enterococcus faecalis JH2-2, survival and proteins analysis. Res Microbiol 148:27–35
    [Google Scholar]
  21. Giard J. C., Rince A., Capiaux H., Auffray Y., Hartke A. 2000; Inactivation of the stress- and starvation-inducible gls24 operon has a pleiotropic effect on cell morphology, stress sensitivity and gene expression in Enterococcus faecalis . J Bacteriol 182:4512–4520
    [Google Scholar]
  22. Grant S. G., Jessee J., Bloom F. R., Hanahan D. 1990; Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci U S A 87:4645–4649
    [Google Scholar]
  23. Hartke A., Giard J. C., Laplace J. M., Auffray Y. 1998; Survival of Enterococcus faecalis in an oligotrophic microcosm: changes in morphology, development of general stress resistance, and analysis of protein synthesis. Appl Environ Microbiol 64:4238–4245
    [Google Scholar]
  24. Houry W. A. 2001; Chaperone-assisted protein folding in the cell cytoplasm. Curr Protein Pept Sci 2:227–244
    [Google Scholar]
  25. Kristich C. J., Chandler J. R., Dunny G. M. 2007; Development of a host-genotype-independent counterselectable marker and high-frequency conjugative delivery system and their use in genetic analysis of Enterococcus faecalis . Plasmid 57:131–144
    [Google Scholar]
  26. Laport M. S., Castro A. C., Villardo A., Lemos J. A., Bastos M. C. F., Giambiagi-deMarval M. 2001; Expression of the major heat shock proteins DnaK and GroEL in Streptococcus pyogenes : a comparison to Enterococcus faecalis and Staphylococcus aureus . Curr Microbiol 42:264–268
    [Google Scholar]
  27. Laport M. S., Lemos J. A., Bastos M. C. F., Burne R. A., Giambiagi-deMarval M. 2004; Transcriptional analysis of the groE and dnaK heat-shock operons of Enterococcus faecalis . Res Microbiol 155:252–258
    [Google Scholar]
  28. Laport M. S., Santos L. L., Lemos J. A. C., Bastos M. C. F., Burne R. A., Giambiagi-deMarval M. 2006; Organization of the heat-shock dnaK and groE operons of the nosocomial pathogen Enterococcus faecium . Res Microbiol 157:162–168
    [Google Scholar]
  29. Lebreton F., Riboulet-Bisson E., Serror P., Sanguinetti M., Posteraro B., Torelli R., Hartke A., Auffray Y., Giard J.-C. 2009; ace , which encodes an adhesin in Enterococcus faecalis , is regulated by Ers and is involved in virulence. Infect Immun 77:2832–2839
    [Google Scholar]
  30. Leenhouts K., Buist G., Bolhuis A., ten Berge A., Kiel J., Mierau I., Dabrowska M., Venema G., Kok J. 1996; A general system for generating unlabelled gene replacements in bacterial chromosomes. Mol Gen Genet 253:217–224
    [Google Scholar]
  31. Lemos J. A. C., Burne R. A. 2002; Regulation and physiological significance of ClpC and ClpP in Streptococcus mutans . J Bacteriol 184:6357–6366
    [Google Scholar]
  32. Loo C. Y., Corliss D. A., Ganeshkumar N. 2000; Streptococcus gordonii biofilm formation: identification of genes that code for biofilm phenotypes. J Bacteriol 182:1374–1382
    [Google Scholar]
  33. Murray B. E. 1990; The life and times of the Enterococcus . Clin Microbiol Rev 3:46–65
    [Google Scholar]
  34. Narberhaus F. 1999; Negative regulation of bacterial heat shock genes. Mol Microbiol 31:1–8
    [Google Scholar]
  35. Park S. K., Kim K. I., Woo K. M., Seol J. H., Tanaka K., Ichihara A., Ha D. B., Chung C. H. 1993; Site-directed mutagenesis of the dual translational initiation sites of the clpB gene of Escherichia coli and characterization of its gene products. J Biol Chem 268:20170–20174
    [Google Scholar]
  36. Park S. Y., Kim K. M., Lee J. H., Seo S. J., Lee I. H. 2007; Extracellular gelatinase of Enterococcus faecalis destroys a defense system in insect hemolymph and human serum. Infect Immun 75:1861–1869
    [Google Scholar]
  37. Paulsen I. T., Banerjei L., Myers G. S., Nelson K. E., Seshadri R., Read T. D., Fouts D. E., Eisen J. A., Gill S. R. other authors 2003; Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis . Science 299:2071–2074
    [Google Scholar]
  38. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  39. Schirmer E. C., Glover J. R., Singer M. A., Lindquist S. 1996; HSP100/Clp proteins: a common mechanism explains diverse functions. Trends Biochem Sci 21:289–296
    [Google Scholar]
  40. Thomas J. G., Baneyx F. 1998; Roles of the Escherichia coli small heat shock proteins ibpA and ibpB in thermal stress management: comparison with ClpA, ClpB and HtpG in vivo . J Bacteriol 180:5165–5172
    [Google Scholar]
  41. Wawrzynow A., Banecki B., Zylicz M. 1996; The Clp ATPases define a novel class of molecular chaperones. Mol Microbiol 21:895–899
    [Google Scholar]
  42. Yuan L., Rodrigues P. H., Belanger M., Dunn J. R. W., Progulske-Fox A. 2007; The Porphyromonas gingivalis clpB gene is involved in cellular invasion in vitro and virulence in vivo . FEMS Immunol Med Microbiol 51:388–398
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.041897-0
Loading
/content/journal/micro/10.1099/mic.0.041897-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error