1887

Abstract

The -encoded polysaccharide intercellular adhesin (PIA) and wall teichoic acids (WTA) are structural components of biofilms. Deletion of which encodes the first enzymic step in WTA biosynthesis, had pleiotropic effects, including enhanced intercellular aggregation and autolytic activity, and impaired biofilm production. The biofilm-negative phenotype of the mutant, named TAGO1, was associated with increased cell surface hydrophobicity, lower rates of primary attachment to polystyrene, and reduced operon and PIA expression. Mild acid stress induced by growth in BHI glucose media reduced rates of stationary phase autolysis and enhanced aggregation by TAGO1, leading to formation of a pellicle, which unlike a biofilm was only loosely attached to the polystyrene surface. TAGO1 pellicles were dispersed by proteinase K and DNase I but not sodium metaperiodate, implicating protein and extracellular DNA (eDNA) and not PIA in this phenotype. Substantially increased levels of eDNA were recovered from TAGO1 culture supernatants compared with the wild-type. These data indicate that WTA are essential for the primary attachment and accumulation phases of the biofilm phenotype. Furthermore, in the absence of WTA, proteins and eDNA can promote cell aggregation and pellicle formation, which also appear to limit interactions with artificial surfaces.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.042234-0
2011-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/2/408.html?itemId=/content/journal/micro/10.1099/mic.0.042234-0&mimeType=html&fmt=ahah

References

  1. Arnaud M., Chastanet A., Debarbouille M. 2004; New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, Gram-positive bacteria. Appl Environ Microbiol 70:6887–6891
    [Google Scholar]
  2. Brown S., Zhang Y. H., Walker S. 2008; A revised pathway proposed for Staphylococcus aureus wall teichoic acid biosynthesis based on in vitro reconstitution of the intracellular steps. Chem Biol 15:12–21
    [Google Scholar]
  3. Brückner R. 1997; Gene replacement in Staphylococcus carnosus and Staphylococcus xylosus. FEMS Microbiol Lett 1511–8
    [Google Scholar]
  4. Calamita H. G., Doyle R. J. 2002; Regulation of autolysins in teichuronic acid-containing Bacillus subtilis cells. Mol Microbiol 44:601–606
    [Google Scholar]
  5. Conlon K. M., Humphreys H., O'Gara J. P. 2002; icaR encodes a transcriptional repressor involved in environmental regulation of ica operon expression and biofilm formation in Staphylococcus epidermidis . J Bacteriol 184:4400–4408
    [Google Scholar]
  6. Corrigan R. M., Rigby D., Handley P., Foster T. J. 2007; The role of Staphylococcus aureus surface protein SasG in adherence and biofilm formation. Microbiology 153:2435–2446
    [Google Scholar]
  7. Eckhart L., Fischer H., Barken K. B., Tolker-Nielsen T., Tschachler E. 2007; DNase1L2 suppresses biofilm formation by Pseudomonas aeruginosa and Staphylococcus aureus . Br J Dermatol 156:1342–1345
    [Google Scholar]
  8. Endl J., Seidl H. P., Fiedler F., Schleifer K. H. 1983; Chemical composition and structure of cell wall teichoic acids of staphylococci. Arch Microbiol 135:215–223
    [Google Scholar]
  9. Gertz S., Engelmann S., Schmid R., Ohlsen K., Hacker J., Hecker M. 1999; Regulation of sigmaB-dependent transcription of sigB and asp23 in two different Staphylococcus aureus strains. Mol Gen Genet 261:558–566
    [Google Scholar]
  10. Gross M., Cramton S. E., Gotz F., Peschel A. 2001; Key role of teichoic acid net charge in Staphylococcus aureus colonization of artificial surfaces. Infect Immun 69:3423–3426
    [Google Scholar]
  11. Handke L. D., Conlon K. M., Slater S. R., Elbaruni S., Fitzpatrick F., Humphreys H., Giles W. P., Rupp M. E., Fey P. D., O'Gara J. P. 2004; Genetic and phenotypic analysis of biofilm phenotypic variation in multiple Staphylococcus epidermidis isolates. J Med Microbiol 53:367–374
    [Google Scholar]
  12. Heilmann C., Hussain M., Peters G., Gotz F. 1997; Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol 24:1013–1024
    [Google Scholar]
  13. Hennig S., Nyunt Wai S., Ziebuhr W. 2007; Spontaneous switch to PIA-independent biofilm formation in an ica -positive Staphylococcus epidermidis isolate. Int J Med Microbiol 297:117–122
    [Google Scholar]
  14. Holland L. M., O'Donnell S. T., Ryjenkov D. A., Gomelsky L., Slater S. R., Fey P. D., Gomelsky M., O'Gara J. P. 2008; A staphylococcal GGDEF domain protein regulates biofilm formation independently of cyclic dimeric GMP. J Bacteriol 190:5178–5189
    [Google Scholar]
  15. Hübscher J., McCallum N., Sifri C. D., Majcherczyk P. A., Entenza J. M., Heusser R., Berger-Bachi B., Stutzmann Meier P. 2009; MsrR contributes to cell surface characteristics and virulence in Staphylococcus aureus . FEMS Microbiol Lett 295:251–260
    [Google Scholar]
  16. Hughes A. H., Hancock I. C., Baddiley J. 1973; The function of teichoic acids in cation control in bacterial membranes. Biochem J 132:83–93
    [Google Scholar]
  17. Hyyrylainen H. L., Vitikainen M., Thwaite J., Wu H., Sarvas M., Harwood C. R., Kontinen V. P., Stephenson K. 2000; d-Alanine substitution of teichoic acids as a modulator of protein folding and stability at the cytoplasmic membrane/cell wall interface of Bacillus subtilis . J Biol Chem 275:26696–26703
    [Google Scholar]
  18. Izano E. A., Amarante M. A., Kher W. B., Kaplan J. B. 2008; Differential roles of poly- N -acetylglucosamine surface polysaccharide and extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis biofilms. Appl Environ Microbiol 74:470–476
    [Google Scholar]
  19. Khan S. A., Novick R. P. 1983; Complete nucleotide sequence of pT181, a tetracycline-resistance plasmid from Staphylococcus aureus . Plasmid 10:251–259
    [Google Scholar]
  20. Knobloch J. K., Jager S., Horstkotte M. A., Rohde H., Mack D. 2004; RsbU-dependent regulation of Staphylococcus epidermidis biofilm formation is mediated via the alternative sigma factor σ B by repression of the negative regulator gene icaR . Infect Immun 72:3838–3848
    [Google Scholar]
  21. Kohler T., Weidenmaier C., Peschel A. 2009; Wall teichoic acid protects Staphylococcus aureus against antimicrobial fatty acids from human skin. J Bacteriol 191:4482–4484
    [Google Scholar]
  22. Koprivnjak T., Weidenmaier C., Peschel A., Weiss J. P. 2008; Wall teichoic acid deficiency in Staphylococcus aureus confers selective resistance to mammalian group IIA phospholipase A2 and human β -defensin 3. Infect Immun 76:2169–2176
    [Google Scholar]
  23. Kreiswirth B. N., Lofdahl S., Betley M. J., O'Reilly M., Schlievert P. M., Bergdoll M. S., Novick R. P. 1983; The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature 305:709–712
    [Google Scholar]
  24. Lambert P. A., Hancock I. C., Baddiley J. 1977; Occurrence and function of membrane teichoic acids. Biochim Biophys Acta 472:1–12
    [Google Scholar]
  25. Lazarevic V., Abellan F. X., Moller S. B., Karamata D., Mauël C. 2002; Comparison of ribitol and glycerol teichoic acid genes in Bacillus subtilis W23 and 168: identical function, similar divergent organization, but different regulation. Microbiology 148:815–824
    [Google Scholar]
  26. Lee C. Y., Buranen S. L., Ye Z. H. 1991; Construction of single-copy integration vectors for Staphylococcus aureus . Gene 103:101–105
    [Google Scholar]
  27. Mack D. 1999; Molecular mechanisms of Staphylococcus epidermidis biofilm formation. J Hosp Infect 43:SupplS113–S125
    [Google Scholar]
  28. Mack D., Nedelmann M., Krokotsch A., Schwarzkopf A., Heesemann J., Laufs R. 1994; Characterization of transposon mutants of biofilm-producing Staphylococcus epidermidis impaired in the accumulative phase of biofilm production: genetic identification of a hexosamine-containing polysaccharide intercellular adhesin. Infect Immun 62:3244–3253
    [Google Scholar]
  29. Maki H., Yamaguchi T., Murakami K. 1994; Cloning and characterization of a gene affecting the methicillin resistance level and the autolysis rate in Staphylococcus aureus . J Bacteriol 176:4993–5000
    [Google Scholar]
  30. Mann E. E., Rice K. C., Boles B. R., Endres J. L., Ranjit D., Chandramohan L., Tsang L. H., Smeltzer M. S., Horswill A. R., Bayles K. W. 2009; Modulation of eDNA release and degradation affects Staphylococcus aureus biofilm maturation. PLoS ONE 4:e5822
    [Google Scholar]
  31. Mauël C., Young M., Karamata D. 1991; Genes concerned with synthesis of poly(glycerol phosphate), the essential teichoic acid in Bacillus subtilis strain 168, are organized in two divergent transcription units. J Gen Microbiol 137:929–941
    [Google Scholar]
  32. Mauël C., Bauduret A., Chervet C., Beggah S., Karamata D. 1995; In Bacillus subtilis 168, teichoic acid of the cross-wall may be different from that of the cylinder: a hypothesis based on transcription analysis of tag genes. Microbiology 141:2379–2389
    [Google Scholar]
  33. Navarre W. W., Schneewind O. 1999; Surface proteins of Gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 63:174–229
    [Google Scholar]
  34. Neuhaus F. C., Baddiley J. 2003; A continuum of anionic charge: structures and functions of d-alanyl-teichoic acids in Gram-positive bacteria. Microbiol Mol Biol Rev 67:686–723
    [Google Scholar]
  35. Novick R. P. 1991; Genetic systems in staphylococci. Methods Enzymol 204:587–636
    [Google Scholar]
  36. O'Neill E., Pozzi C., Houston P., Humphreys H., Robinson D. A., Loughman A., Foster T. J., O'Gara J. P. 2008; A novel Staphylococcus aureus biofilm phenotype mediated by the fibronectin-binding proteins, FnBPA and FnBPB. J Bacteriol 190:3835–3850
    [Google Scholar]
  37. Qian Z., Yin Y., Zhang Y., Lu L., Li Y., Jiang Y. 2006; Genomic characterization of ribitol teichoic acid synthesis in Staphylococcus aureus : genes, genomic organization and gene duplication. BMC Genomics 7:74
    [Google Scholar]
  38. Qin Z., Ou Y., Yang L., Zhu Y., Tolker-Nielsen T., Molin S., Qu D. 2007; Role of autolysin-mediated DNA release in biofilm formation of Staphylococcus epidermidis . Microbiology 153:2083–2092
    [Google Scholar]
  39. Rice K. C., Mann E. E., Endres J. L., Weiss E. C., Cassat J. E., Smeltzer M. S., Bayles K. W. 2007; The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus . Proc Natl Acad Sci U S A 104:8113–8118
    [Google Scholar]
  40. Rohde H., Burdelski C., Bartscht K., Hussain M., Buck F., Horstkotte M. A., Knobloch J. K., Heilmann C., Herrmann M., Mack D. 2005a; Induction of Staphylococcus epidermidis biofilm formation via proteolytic processing of the accumulation-associated protein by staphylococcal and host proteases. Mol Microbiol 55:1883–1895
    [Google Scholar]
  41. Rohde H., Burdelski C., Bartscht K., Hussain M., Buck F., Horstkotte M. A., Knobloch J. K., Heilmann C., Herrmann M., Mack D. 2005b; Induction of Staphylococcus epidermidis biofilm formation via proteolytic processing of the accumulation-associated protein by staphylococcal and host proteases. Mol Microbiol 55:1883–1895
    [Google Scholar]
  42. Rosenberg M. 2006; Microbial adhesion to hydrocarbons: twenty-five years of doing MATH. FEMS Microbiol Lett 262:129–134
    [Google Scholar]
  43. Sadovskaya I., Vinogradov E., Li J., Jabbouri S. 2004; Structural elucidation of the extracellular and cell-wall teichoic acids of Staphylococcus epidermidis RP62A, a reference biofilm-positive strain. Carbohydr Res 339:1467–1473
    [Google Scholar]
  44. Sadovskaya I., Vinogradov E., Flahaut S., Kogan G., Jabbouri S. 2005; Extracellular carbohydrate-containing polymers of a model biofilm-producing strain, Staphylococcus epidermidis RP62A. Infect Immun 73:3007–3017
    [Google Scholar]
  45. Schlag M., Biswas R., Krismer B., Kohler T., Zoll S., Yu W., Schwarz H., Peschel A., Gotz F. 2010; Role of staphylococcal wall teichoic acid in targeting the major autolysin Atl. Mol Microbiol 75:864–873
    [Google Scholar]
  46. Soldo B., Lazarevic V., Karamata D. 2002; tagO is involved in the synthesis of all anionic cell-wall polymers in Bacillus subtilis 168. Microbiology 148:2079–2087
    [Google Scholar]
  47. Swoboda J. G., Campbell J., Meredith T. C., Walker S. 2010; Wall teichoic acid function, biosynthesis, and inhibition. ChemBioChem 11:35–45
    [Google Scholar]
  48. Vergara-Irigaray M., Maira-Litran T., Merino N., Pier G. B., Penades J. R., Lasa I. 2008; Wall teichoic acids are dispensable for anchoring the PNAG exopolysaccharide to the Staphylococcus aureus cell surface. Microbiology 154:865–877
    [Google Scholar]
  49. Vinogradov E., Sadovskaya I., Li J., Jabbouri S. 2006; Structural elucidation of the extracellular and cell-wall teichoic acids of Staphylococcus aureus MN8m, a biofilm forming strain. Carbohydr Res 341:738–743
    [Google Scholar]
  50. Weidenmaier C., Peschel A. 2008; Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions. Nat Rev Microbiol 6:276–287
    [Google Scholar]
  51. Weidenmaier C., Kokai-Kun J. F., Kristian S. A., Chanturiya T., Kalbacher H., Gross M., Nicholson G., Neumeister B., Mond J. J., Peschel A. 2004; Role of teichoic acids in Staphylococcus aureus nasal colonization, a major risk factor in nosocomial infections. Nat Med 10:243–245
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.042234-0
Loading
/content/journal/micro/10.1099/mic.0.042234-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error