1887

Abstract

In contrast with most bacteria, which harbour a single inosine monophosphate dehydrogenase (IMPDH) gene, the genomic sequence of H37Rv predicts three genes encoding IMPDH: , and . These three genes were cloned and expressed in to evaluate functional IMPDH activity. Purified recombinant Mt-GuaB2, which uses inosine monophosphate as a substrate, was identified as the only active GuaB orthologue in and showed optimal activity at pH 8.5 and 37 °C. Mt-GuaB2 was inhibited significantly by a panel of diphenyl urea-based derivatives, which were also potent anti-mycobacterial agents against and , with MICs in the range of 0.2–0.5 μg ml. When Mt-GuaB2 was overexpressed on a plasmid in , a diphenyl urea analogue showed a 16-fold increase in MIC. Interestingly, when Mt-GuaB orthologues (MtGuaB1 and 3) were also overexpressed on a plasmid in , they also conferred resistance, suggesting that although these Mt-GuaB orthologues were inactive , they presumably titrate the effect of the inhibitory properties of the active compounds .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.042549-0
2011-01-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/1/290.html?itemId=/content/journal/micro/10.1099/mic.0.042549-0&mimeType=html&fmt=ahah

References

  1. Ananthan S., Faaleolea E. R., Goldman R. C., Hobrath J. V., Kwong C. D., Laughon B. E., Maddry J. A., Mehta A., Rasmussen L. other authors 2009; High-throughput screening for inhibitors of Mycobacterium tuberculosis H37Rv. Tuberculosis (Edinb 89:334–353
    [Google Scholar]
  2. Ashbaugh C. D., Wessels M. R. 1995; Cloning, sequence analysis and expression of the group A streptococcal guaB gene encoding inosine monophosphate dehydrogenase. Gene 165:57–60
    [Google Scholar]
  3. Carr S. F., Papp E., Wu J. C., Natsumeda Y. 1993; Characterization of human type I and type II IMP dehydrogenases. J Biol Chem 268:27286–27290
    [Google Scholar]
  4. Chaturvedi V., Dwivedi N., Tripathi R. P., Sinha S. 2007; Evaluation of Mycobacterium smegmatis as a possible surrogate screen for selecting molecules active against multi-drug resistant Mycobacterium tuberculosis . J Gen Appl Microbiol 53:333–337
    [Google Scholar]
  5. Chung G. A., Aktar Z., Jackson S., Duncan K. 1995; High-throughput screen for detecting antimycobacterial agents. Antimicrob Agents Chemother 39:2235–2238
    [Google Scholar]
  6. Cole S. T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S. V., Eiglmeier K., Gas S. other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544
    [Google Scholar]
  7. Corbett E. L., Watt C. J., Walker N., Maher D., Williams B. G., Raviglione M. C., Dye C. 2003; The growing burden of tuberculosis: global trends and interactions with the HIV epidemic. Arch Intern Med 163:1009–1021
    [Google Scholar]
  8. Dobie F., Berg A., Boitz J. M., Jardim A. 2007; Kinetic characterization of inosine monophosphate dehydrogenase of Leishmania donovani . Mol Biochem Parasitol 152:11–21
    [Google Scholar]
  9. Gilbert H. J., Drabble W. T. 1980; Active-site modification of native and mutant forms of inosine 5′-monophosphate dehydrogenase from Escherichia coli K12. Biochem J 191:533–541
    [Google Scholar]
  10. Gilbert H. J., Lowe C. R., Drabble W. T. 1979; Inosine 5′-monophosphate dehydrogenase of Escherichia coli . Purification by affinity chromatography, subunit structure and inhibition by guanosine 5′-monophosphate. Biochem J 183:481–494
    [Google Scholar]
  11. Hager P. W., Collart F. R., Huberman E., Mitchell B. S. 1995; Recombinant human inosine monophosphate dehydrogenase type I and type II proteins. Purification and characterization of inhibitor binding. Biochem Pharmacol 49:1323–1329
    [Google Scholar]
  12. Hedstrom L. 2009; IMP dehydrogenase: structure, mechanism, and inhibition. Chem Rev 109:2903–2928
    [Google Scholar]
  13. Hetherington S. V., Watson A. S., Patrick C. C. 1995; Sequence and analysis of the rpoB gene of Mycobacterium smegmatis . Antimicrob Agents Chemother 39:2164–2166
    [Google Scholar]
  14. Jackson R. C., Weber G., Morris H. P. 1975; IMP dehydrogenase, an enzyme linked with proliferation and malignancy. Nature 256:331–333
    [Google Scholar]
  15. Jarlier V., Nikaido H. 1994; Mycobacterial cell wall: structure and role in natural resistance to antibiotics. FEMS Microbiol Lett 123:11–18
    [Google Scholar]
  16. Kaufmann S. H., Parida S. K. 2007; Changing funding patterns in tuberculosis. Nat Med 13:299–303
    [Google Scholar]
  17. Kerr K. M., Hedstrom L. 1997; The roles of conserved carboxylate residues in IMP dehydrogenase and identification of a transition state analog. Biochemistry 36:13365–13373
    [Google Scholar]
  18. Kerr K. M., Cahoon M., Bosco D. A., Hedstrom L. 2000; Monovalent cation activation in Escherichia coli inosine 5′-monophosphate dehydrogenase. Arch Biochem Biophys 375:131–137
    [Google Scholar]
  19. Lambden P. R., Drabble W. T. 1973; The gua operon of Escherichia coli K-12: evidence for polarity from guaB to guaA . J Bacteriol 115:992–1002
    [Google Scholar]
  20. Li X. Z., Zhang L., Nikaido H. 2004; Efflux pump-mediated intrinsic drug resistance in Mycobacterium smegmatis . Antimicrob Agents Chemother 48:2415–2423
    [Google Scholar]
  21. Macpherson I. S., Kirubakaran S., Gorla S. K., Riera T. V., D'Aquino J. A., Zhang M., Cuny G. D., Hedstrom L. 2010; The structural basis of Cryptosporidium -specific IMP dehydrogenase inhibitor selectivity. J Am Chem Soc 132:1230–1231
    [Google Scholar]
  22. Maddry J. A., Ananthan S., Goldman R. C., Hobrath J. V., Kwong C. D., Maddox C., Rasmussen L., Reynolds R. C., Secrist J. A. III other authors 2009; Antituberculosis activity of the molecular libraries screening center network library. Tuberculosis (Edinb 89:354–363
    [Google Scholar]
  23. Magasanik B., Moyed H. S., Gehring L. B. 1957; Enzymes essential for the biosynthesis of nucleic acid guanine; inosine 5′-phosphate dehydrogenase of Aerobacter aerogenes . J Biol Chem 226:339–350
    [Google Scholar]
  24. Neuhard J., Nygaard P. 1996; Purines and Pyrimidines. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. pp 445–461 Edited by Neidhardt F. C. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  25. Pal S., Bera B., Nair V. 2002; Inhibition of inosine monophosphate dehydrogenase (IMPDH) by the antiviral compound, 2-vinylinosine monophosphate. Bioorg Med Chem 10:3615–3618
    [Google Scholar]
  26. Park S. J., Joo W. A., Choi J., Lee S. H., Kim C. W. 2004; Identification and characterization of inosine monophosphate dehydrogenase from Halobacterium salinarum . Proteomics 4:3632–3641
    [Google Scholar]
  27. Piddock L. J., Williams K. J., Ricci V. 2000; Accumulation of rifampicin by Mycobacterium aurum , Mycobacterium smegmatis and Mycobacterium tuberculosis . J Antimicrob Chemother 45:159–165
    [Google Scholar]
  28. Pimkin M., Pimkina J., Markham G. D. 2009; A regulatory role of the Bateman domain of IMP dehydrogenase in adenylate nucleotide biosynthesis. J Biol Chem 284:7960–7969
    [Google Scholar]
  29. Prosise G. L., Wu J. Z., Luecke H. 2002; Crystal structure of Tritrichomonas foetus inosine monophosphate dehydrogenase in complex with the inhibitor ribavirin monophosphate reveals a catalysis-dependent ion-binding site. J Biol Chem 277:50654–50659
    [Google Scholar]
  30. Reddy V. M., Einck L., Nacy C. A. 2008; In vitro antimycobacterial activities of capuramycin analogues. Antimicrob Agents Chemother 52:719–721
    [Google Scholar]
  31. Risal D., Strickler M. D., Goldstein B. M. 2004; Ternary complex of the human type II inosine monophosphate dehydrogenase with 6Cl-IMP and NAD.
    [Google Scholar]
  32. Sassetti C. M., Boyd D. H., Rubin E. J. 2001; Comprehensive identification of conditionally essential genes in mycobacteria. Proc Natl Acad Sci U S A 98:12712–12717
    [Google Scholar]
  33. Sassetti C. M., Boyd D. H., Rubin E. J. 2003; Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48:77–84
    [Google Scholar]
  34. Shu Q., Nair V. 2008; Inosine monophosphate dehydrogenase (IMPDH) as a target in drug discovery. Med Res Rev 28:219–232
    [Google Scholar]
  35. Striepen B., White M. W., Li C., Guerini M. N., Malik S. B., Logsdon J. M. Jr, Liu C., Abrahamsen M. S. 2002; Genetic complementation in apicomplexan parasites. Proc Natl Acad Sci U S A 99:6304–6309
    [Google Scholar]
  36. Tiedeman A. A., Smith J. M. 1985; Nucleotide sequence of the guaB locus encoding IMP dehydrogenase of Escherichia coli K12. Nucleic Acids Res 13:1303–1316
    [Google Scholar]
  37. Umejiego N. N., Li C., Riera T., Hedstrom L., Striepen B. 2004; Cryptosporidium parvum IMP dehydrogenase: identification of functional, structural, and dynamic properties that can be exploited for drug design. J Biol Chem 279:40320–40327
    [Google Scholar]
  38. Verham R., Meek T. D., Hedstrom L., Wang C. C. 1987; Purification, characterization, and kinetic analysis of inosine 5′-monophosphate dehydrogenase of Tritrichomonas foetus . Mol Biochem Parasitol 24:1–12
    [Google Scholar]
  39. Xiang B., Taylor J. C., Markham G. D. 1996; Monovalent cation activation and kinetic mechanism of inosine 5′-monophosphate dehydrogenase. J Biol Chem 271:1435–1440
    [Google Scholar]
  40. Zhang R., Evans G., Rotella F. J., Westbrook E. M., Beno D., Huberman E., Joachimiak A., Collart F. R. 1999; Characteristics and crystal structure of bacterial inosine-5′-monophosphate dehydrogenase. Biochemistry 38:4691–4700
    [Google Scholar]
  41. Zhang X. H., He K. W., Duan Z. T., Zhou J. M., Yu Z. Y., Ni Y. X., Lu C. P. 2009; Identification and characterization of inosine 5-monophosphate dehydrogenase in Streptococcus suis type 2. Microb Pathog 47:267–273
    [Google Scholar]
  42. Zhou X., Cahoon M., Rosa P., Hedstrom L. 1997; Expression, purification, and characterization of inosine 5′-monophosphate dehydrogenase from Borrelia burgdorferi . J Biol Chem 272:21977–21981
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.042549-0
Loading
/content/journal/micro/10.1099/mic.0.042549-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error