1887

Abstract

The stationary-phase response mediated by the RpoS sigma factor (σ, σ) has been widely studied as a general mechanism of activation of highly diverse genes that maintain cell viability. In bacteria, genes for diverse functions have been associated with this response, showing that bacteria use a large number of functions to contend with adverse conditions in their environment. However, little is known about how the genes have been functionally recruited in diverse organisms. In this work, we address the analysis of genes regulated by σ, based on a comparative genomic-scale analysis considering four versatile bacterial species that represent different lifestyles and taxonomic groups, K-12, and , as well as the extent of conservation in bacterial genomes, as a means of assessing the evolution of this sigmulon across all organisms completely sequenced. The analysis presented here shows that genes associated with the σ response have been recruited from diverse regulons to achieve a global response. In addition, and based on the distribution of orthologues, we show a group of genes that is highly conserved among all organisms, mainly associated with glycerol metabolism, as well as diverse functional genes recruited in a lineage-specific manner.

Funding
This study was supported by the:
  • Dirección General Asuntos del Personal Académico-Universidad Nacional Autónoma de México
  • DGAPA-UNAM (Award IN-217508)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.042937-0
2011-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/5/1393.html?itemId=/content/journal/micro/10.1099/mic.0.042937-0&mimeType=html&fmt=ahah

References

  1. Benson D. A., Karsch-Mizrachi I., Lipman D. J., Ostell J., Wheeler D. L. ( 2008). GenBank. Nucleic Acids Res 36:Database issueD25–D30 [View Article][PubMed]
    [Google Scholar]
  2. Brisson D., Vohl M. C., St-Pierre J., Hudson T. J., Gaudet D. ( 2001). Glycerol: a neglected variable in metabolic processes?. Bioessays 23:534–542 [View Article][PubMed]
    [Google Scholar]
  3. Caimano M. J., Eggers C. H., Hazlett K. R., Radolf J. D. ( 2004). RpoS is not central to the general stress response in Borrelia burgdorferi but does control expression of one or more essential virulence determinants. Infect Immun 72:6433–6445 [View Article][PubMed]
    [Google Scholar]
  4. Chen G., Patten C. L., Schellhorn H. E. ( 2004). Positive selection for loss of RpoS function in Escherichia coli . Mutat Res 554:193–203[PubMed] [CrossRef]
    [Google Scholar]
  5. Chiang S. M., Schellhorn H. E. ( 2010). Evolution of the RpoS regulon: origin of RpoS and the conservation of RpoS-dependent regulation in bacteria. J Mol Evol 70:557–571 [View Article][PubMed]
    [Google Scholar]
  6. Dong T., Chiang S. M., Joyce C., Yu R., Schellhorn H. E. ( 2009). Polymorphism and selection of rpoS in pathogenic Escherichia coli . BMC Microbiol 9:118 [View Article][PubMed]
    [Google Scholar]
  7. Dufour Y. S., Kiley P. J., Donohue T. J. ( 2010). Reconstruction of the core and extended regulons of global transcription factors. PLoS Genet 6:e1001027 [View Article][PubMed]
    [Google Scholar]
  8. Finn R. D., Mistry J., Tate J., Coggill P., Heger A., Pollington J. E., Gavin O. L., Gunasekaran P., Ceric G. et al. ( 2010). The Pfam protein families database. Nucleic Acids Res 38:Database issueD211–D222 [View Article][PubMed]
    [Google Scholar]
  9. Fitch W. M. ( 1970). Distinguishing homologous from analogous proteins. Syst Zool 19:99–113 [View Article][PubMed]
    [Google Scholar]
  10. Gama-Castro S., Jiménez-Jacinto V., Peralta-Gil M., Santos-Zavaleta A., Peñaloza-Spinola M. I., Contreras-Moreira B., Segura-Salazar J., Muñiz-Rascado L., Martínez-Flores I. et al. ( 2008). RegulonDB (version 6.0): gene regulation model of Escherichia coli K-12 beyond transcription, active (experimental) annotated promoters and Textpresso navigation. Nucleic Acids Res 36:Database issueD120–D124 [View Article][PubMed]
    [Google Scholar]
  11. Hales L. M., Shuman H. A. ( 1999). The Legionella pneumophila rpoS gene is required for growth within Acanthamoeba castellanii . J Bacteriol 181:4879–4889[PubMed]
    [Google Scholar]
  12. Hecker M., Pané-Farré J., Völker U. ( 2007). SigB-dependent general stress response in Bacillus subtilis and related Gram-positive bacteria. Annu Rev Microbiol 61:215–236 [View Article][PubMed]
    [Google Scholar]
  13. Hengge-Aronis R. ( 1996). Back to log phase: σS as a global regulator in the osmotic control of gene expression in Escherichia coli . Mol Microbiol 21:887–893 [View Article][PubMed]
    [Google Scholar]
  14. Hengge-Aronis R. ( 1999). Interplay of global regulators and cell physiology in the general stress response of Escherichia coli . Curr Opin Microbiol 2:148–152 [View Article][PubMed]
    [Google Scholar]
  15. Hengge-Aronis R. ( 2000). A role for the σS subunit of RNA polymerase in the regulation of bacterial virulence. Adv Exp Med Biol 485:85–93 [View Article][PubMed]
    [Google Scholar]
  16. Hengge-Aronis R. ( 2002). Signal transduction and regulatory mechanisms involved in control of the σS (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev 66:373–395 [View Article][PubMed]
    [Google Scholar]
  17. Janga S. C., Moreno-Hagelsieb G. ( 2004). Conservation of adjacency as evidence of paralogous operons. Nucleic Acids Res 32:5392–5397 [View Article][PubMed]
    [Google Scholar]
  18. Kehry M. R., Dahlquist F. W. ( 1982). The methyl-accepting chemotaxis proteins of Escherichia coli. Identification of the multiple methylation sites on methyl-accepting chemotaxis protein I. J Biol Chem 257:10378–10386[PubMed]
    [Google Scholar]
  19. King T., Seeto S., Ferenci T. ( 2006). Genotype-by-environment interactions influencing the emergence of rpoS mutations in Escherichia coli populations. Genetics 172:2071–2079 [View Article][PubMed]
    [Google Scholar]
  20. Liu R., Ochman H. ( 2007). Stepwise formation of the bacterial flagellar system. Proc Natl Acad Sci U S A 104:7116–7121 [View Article][PubMed]
    [Google Scholar]
  21. Loewen P. C., Hu B., Strutinsky J., Sparling R. ( 1998). Regulation in the rpoS regulon of Escherichia coli . Can J Microbiol 44:707–717 [View Article][PubMed]
    [Google Scholar]
  22. Lozada-Chávez I., Janga S. C., Collado-Vides J. ( 2006). Bacterial regulatory networks are extremely flexible in evolution. Nucleic Acids Res 34:3434–3445 [View Article][PubMed]
    [Google Scholar]
  23. Martínez-García E., Tormo A., Navarro-Llorens J. M. ( 2001). Further studies on RpoS in enterobacteria: identification of rpoS in Enterobacter cloacae and Kluyvera cryocrescens . Arch Microbiol 175:395–404 [View Article][PubMed]
    [Google Scholar]
  24. Masuda N., Church G. M. ( 2003). Regulatory network of acid resistance genes in Escherichia coli . Mol Microbiol 48:699–712 [View Article][PubMed]
    [Google Scholar]
  25. Monsieurs P., De Keersmaecker S., Navarre W. W., Bader M. W., De Smet F., McClelland M., Fang F. C., De Moor B., Vanderleyden J., Marchal K. ( 2005). Comparison of the PhoPQ regulon in Escherichia coli and Salmonella typhimurium . J Mol Evol 60:462–474 [View Article][PubMed]
    [Google Scholar]
  26. Núñez C., Esteve-Núñez A., Giometti C., Tollaksen S., Khare T., Lin W., Lovley D. R., Methé B. A. ( 2006). DNA microarray and proteomic analyses of the RpoS regulon in Geobacter sulfurreducens . J Bacteriol 188:2792–2800 [View Article][PubMed]
    [Google Scholar]
  27. Paget M. S., Helmann J. D. ( 2003). The σ70 family of sigma factors. Genome Biol 4:203 [View Article][PubMed]
    [Google Scholar]
  28. Sierro N., Makita Y., de Hoon M., Nakai K. ( 2008). DBTBS: a database of transcriptional regulation in Bacillus subtilis containing upstream intergenic conservation information. Nucleic Acids Res 36:Database issueD93–D96 [View Article][PubMed]
    [Google Scholar]
  29. Tatusov R. L., Koonin E. V., Lipman D. J. ( 1997). A genomic perspective on protein families. Science 278:631–637 [View Article][PubMed]
    [Google Scholar]
  30. Tramonti A., De Canio M., Bossa F., De Biase D. ( 2003). Stability and oligomerization of recombinant GadX, a transcriptional activator of the Escherichia coli glutamate decarboxylase system. Biochim Biophys Acta 1647:376–380[PubMed] [CrossRef]
    [Google Scholar]
  31. Völker U., Maul B., Hecker M. ( 1999). Expression of the σB-dependent general stress regulon confers multiple stress resistance in Bacillus subtilis . J Bacteriol 181:3942–3948[PubMed]
    [Google Scholar]
  32. Weber H., Polen T., Heuveling J., Wendisch V. F., Hengge R. ( 2005). Genome-wide analysis of the general stress response network in Escherichia coli: σS-dependent genes, promoters, and sigma factor selectivity. J Bacteriol 187:1591–1603 [View Article][PubMed]
    [Google Scholar]
  33. Weitzman P. D. ( 1981). Unity and diversity in some bacterial citric acid-cycle enzymes. Adv Microb Physiol 22:185–244 [View Article][PubMed]
    [Google Scholar]
  34. Woodsmall R. M., Benson D. A. ( 1993). Information resources at the National Center for Biotechnology Information. Bull Med Libr Assoc 81:282–284[PubMed]
    [Google Scholar]
  35. Zambrano M. M., Siegele D. A., Almirón M., Tormo A., Kolter R. ( 1993). Microbial competition: Escherichia coli mutants that take over stationary phase cultures. Science 259:1757–1760 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.042937-0
Loading
/content/journal/micro/10.1099/mic.0.042937-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error