1887

Abstract

The food-borne pathogen is able to form biofilms in food processing environments. Since biofilms are generally difficult to eradicate during clean-up procedures, they pose a major risk for the food industry. Stress resistance mechanisms involved in biofilm formation and disinfectant resistance have, to our knowledge, not been identified thus far. In this study, we investigated the role of , which encodes the transcriptional regulator of the class I heat-shock response, and , which encodes a class I heat-shock response chaperone protein, in static and continuous-flow biofilm formation and resistance against benzalkonium chloride and peracetic acid. Induction of both and during continuous-flow biofilm formation was observed using quantitative real-time PCR and promoter reporters. Furthermore, in-frame deletion and complementation mutants of and revealed that HrcA and DnaK are required to reach wild-type levels of both static and continuous-flow biofilms. Finally, disinfection treatments of planktonic-grown cells and suspended static and continuous-flow biofilm cells of wild-type and mutants showed that HrcA and DnaK are important for resistance against benzalkonium chloride and peracetic acid. In conclusion, our study revealed that HrcA and DnaK are important for biofilm formation and disinfectant resistance.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.043000-0
2010-12-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/12/3782.html?itemId=/content/journal/micro/10.1099/mic.0.043000-0&mimeType=html&fmt=ahah

References

  1. Berrang M. E., Frank J. F., Meinersmann R. J. 2008; Effect of chemical sanitizers with and without ultrasonication on Listeria monocytogenes as a biofilm within polyvinyl chloride drain pipes. J Food Prot 71:66–69
    [Google Scholar]
  2. Chasseignaux E., Gerault P., Toquin M. T., Salvat G., Colin P., Ermel G. 2002; Ecology of Listeria monocytogenes in the environment of raw poultry meat and raw pork meat processing plants. FEMS Microbiol Lett 210:271–275
    [Google Scholar]
  3. Costerton J. W., Lewandowski Z., Caldwell D. E., Korber D. R., Lappin-Scott H. M. 1995; Microbial biofilms. Annu Rev Microbiol 49:711–745
    [Google Scholar]
  4. Diamant S., Ben-Zvi A. P., Bukau B., Goloubinoff P. 2000; Size-dependent disaggregation of stable protein aggregates by the DnaK chaperone machinery. J Biol Chem 275:21107–21113
    [Google Scholar]
  5. Folsom J. P., Frank J. F. 2006; Chlorine resistance of Listeria monocytogenes biofilms and relationship to subtype, cell density, and planktonic cell chlorine resistance. J Food Prot 69:1292–1296
    [Google Scholar]
  6. Gahan C. G., O'Mahony J., Hill C. 2001; Characterization of the groESL operon in Listeria monocytogenes : utilization of two reporter systems ( gfp and hly ) for evaluating in vivo expression. Infect Immun 69:3924–3932
    [Google Scholar]
  7. Glaser P., Frangeul L., Buchrieser C., Rusniok C., Amend A., Baquero F., Berche P., Bloecker H., Brandt P. other authors 2001; Comparative genomics of Listeria species. Science 294:849–852
    [Google Scholar]
  8. Hanawa T., Fukuda M., Kawakami H., Hirano H., Kamiya S., Yamamoto T. 1999; The Listeria monocytogenes DnaK chaperone is required for stress tolerance and efficient phagocytosis with macrophages. Cell Stress Chaperones 4:118–128
    [Google Scholar]
  9. Hanawa T., Kai M., Kamiya S., Yamamoto T. 2000; Cloning, sequencing, and transcriptional analysis of the dnaK heat shock operon of Listeria monocytogenes . Cell Stress Chaperones 5:21–29
    [Google Scholar]
  10. Hu Y., Oliver H. F., Raengpradub S., Palmer M. E., Orsi R. H., Wiedmann M., Boor K. J. 2007; Transcriptomic and phenotypic analyses suggest a network between the transcriptional regulators HrcA and sigmaB in Listeria monocytogenes . Appl Environ Microbiol 73:7981–7991
    [Google Scholar]
  11. Kalmokoff M. L., Austin J. W., Wan X. D., Sanders G., Banerjee S., Farber J. M. 2001; Adsorption, attachment and biofilm formation among isolates of Listeria monocytogenes using model conditions. J Appl Microbiol 91:725–734
    [Google Scholar]
  12. Kastbjerg V. G., Gram L. 2009; Model systems allowing quantification of sensitivity to disinfectants and comparison of disinfectant susceptibility of persistent and presumed nonpersistent Listeria monocytogenes . J Appl Microbiol 106:1667–1681
    [Google Scholar]
  13. Lambert J. M., Bongers R. S., Kleerebezem M. 2007; Cre- lox -based system for multiple gene deletions and selectable-marker removal in Lactobacillus plantarum . Appl Environ Microbiol 73:1126–1135
    [Google Scholar]
  14. Lemos J. A., Burne R. A. 2002; Regulation and physiological significance of ClpC and ClpP in Streptococcus mutans . J Bacteriol 184:6357–6366
    [Google Scholar]
  15. Lemos J. A., Luzardo Y., Burne R. A. 2007; Physiologic effects of forced down-regulation of dnaK and groEL expression in Streptococcus mutans . J Bacteriol 189:1582–1588
    [Google Scholar]
  16. Lewis K. 2001; Riddle of biofilm resistance. Antimicrob Agents Chemother 45:999–1007
    [Google Scholar]
  17. Liberek K., Lewandowska A., Zietkiewicz S. 2008; Chaperones in control of protein disaggregation. EMBO J 27:328–335
    [Google Scholar]
  18. Liu S., Graham J. E., Bigelow L., Morse P. D. II, Wilkinson B. J. 2002; Identification of Listeria monocytogenes genes expressed in response to growth at low temperature. Appl Environ Microbiol 68:1697–1705
    [Google Scholar]
  19. Maguin E., Prevost H., Ehrlich S. D., Gruss A. 1996; Efficient insertional mutagenesis in lactococci and other gram-positive bacteria. J Bacteriol 178:931–935
    [Google Scholar]
  20. Mah T. F., O'Toole G. A. 2001; Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39
    [Google Scholar]
  21. McDonnell G., Russell A. D. 1999; Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 12:147–179
    [Google Scholar]
  22. Monk I. R., Gahan C. G., Hill C. 2008; Tools for functional postgenomic analysis of Listeria monocytogenes . Appl Environ Microbiol 74:3921–3934
    [Google Scholar]
  23. Nair S., Derre I., Msadek T., Gaillot O., Berche P. 2000; CtsR controls class III heat shock gene expression in the human pathogen Listeria monocytogenes . Mol Microbiol 35:800–811
    [Google Scholar]
  24. Narberhaus F. 1999; Negative regulation of bacterial heat shock genes. Mol Microbiol 31:1–8
    [Google Scholar]
  25. O'Toole G. A., Kolter R. 1998; Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28:449–461
    [Google Scholar]
  26. Pan Y., Breidt F. Jr, Kathariou S. 2006; Resistance of Listeria monocytogenes biofilms to sanitizing agents in a simulated food processing environment. Appl Environ Microbiol 72:7711–7717
    [Google Scholar]
  27. Pritchard T. J., Flanders K. J., Donnelly C. W. 1995; Comparison of the incidence of Listeria on equipment versus environmental sites within dairy processing plants. Int J Food Microbiol 26:375–384
    [Google Scholar]
  28. Rieu A., Briandet R., Habimana O., Garmyn D., Guzzo J., Piveteau P. 2008; Listeria monocytogenes EGD-e biofilms: no mushrooms but a network of knitted chains. Appl Environ Microbiol 74:4491–4497
    [Google Scholar]
  29. Robbins J. B., Fisher C. W., Moltz A. G., Martin S. E. 2005; Elimination of Listeria monocytogenes biofilms by ozone, chlorine, and hydrogen peroxide. J Food Prot 68:494–498
    [Google Scholar]
  30. Rodriguez A., Autio W. R., McLandsborough L. A. 2008; Effect of surface roughness and stainless steel finish on Listeria monocytogenes attachment and biofilm formation. J Food Prot 71:170–175
    [Google Scholar]
  31. Romanova N. A., Wolffs P. F., Brovko L. Y., Griffiths M. W. 2006; Role of efflux pumps in adaptation and resistance of Listeria monocytogenes to benzalkonium chloride. Appl Environ Microbiol 72:3498–3503
    [Google Scholar]
  32. Romanova N. A., Gawande P. V., Brovko L. Y., Griffiths M. W. 2007; Rapid methods to assess sanitizing efficacy of benzalkonium chloride to Listeria monocytogenes biofilms. J Microbiol Methods 71:231–237
    [Google Scholar]
  33. Schulz A., Schumann W. 1996; hrcA , the first gene of the Bacillus subtilis dnaK operon encodes a negative regulator of class I heat shock genes. J Bacteriol 178:1088–1093
    [Google Scholar]
  34. Stopforth J. D., Samelis J., Sofos J. N., Kendall P. A., Smith G. C. 2002; Biofilm formation by acid-adapted and nonadapted Listeria monocytogenes in fresh beef decontamination washings and its subsequent inactivation with sanitizers. J Food Prot 65:1717–1727
    [Google Scholar]
  35. To M. S., Favrin S., Romanova N., Griffiths M. W. 2002; Postadaptational resistance to benzalkonium chloride and subsequent physicochemical modifications of Listeria monocytogenes . Appl Environ Microbiol 68:5258–5264
    [Google Scholar]
  36. Todhanakasem T., Young G. M. 2008; Loss of flagellum-based motility by Listeria monocytogenes results in formation of hyperbiofilms. J Bacteriol 190:6030–6034
    [Google Scholar]
  37. Tompkin R. B. 2002; Control of Listeria monocytogenes in the food-processing environment. J Food Prot 65:709–725
    [Google Scholar]
  38. van der Veen S., Abee T. 2010; Dependence of continuous-flow biofilm formation by Listeria monocytogenes EGD-e on SOS response factor YneA. Appl Environ Microbiol 76:1992–1995
    [Google Scholar]
  39. van der Veen S., van Schalkwijk S., Molenaar D., de Vos W. M., Abee T., Wells-Bennik M. H. 2010; The SOS response of Listeria monocytogenes is involved in stress resistance and mutagenesis. Microbiology 156:374–384
    [Google Scholar]
  40. Zwietering M. H., Jongenburger I., Rombouts F. M., van't Riet K. 1990; Modeling of the bacterial growth curve. Appl Environ Microbiol 56:1875–1881
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.043000-0
Loading
/content/journal/micro/10.1099/mic.0.043000-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error