1887

Abstract

The triggering of antibiotic production by various environmental stress molecules can be interpreted as bacteria's response to obtain increased fitness to putative danger, whereas the opposite situation – inhibition of antibiotic production – is more complicated to understand. Phenazines enable species to eliminate competitors for rhizosphere colonization and are typical virulence factors used for model studies. In the present work, we have investigated the negative effect of subinhibitory concentrations of NaCl, fusaric acid and two antibiotics on quorum-sensing-controlled phenazine production by . The selected stress factors inhibit phenazine synthesis despite sufficient cell density. Subsequently, we have identified connections between known genes of the phenazine-inducing cascade, including PsrA ( sigma regulator), RpoS (alternative sigma factor), Pip (phenazine inducing protein) and PhzI/PhzR (quorum-sensing system). Under all tested conditions, overexpression of Pip or PhzR restored phenazine production while overexpression of PsrA or RpoS did not. This forced restoration of phenazine production in strains overexpressing regulatory genes and significantly impairs growth and stress resistance; this is particularly severe with overexpression. We suggest a novel physiological explanation for the inhibition of phenazine virulence factors in pseudomonas species responding to toxic compounds. We propose that switching off phenazine-1-carboxamide (PCN) synthesis by attenuating expression would favour processes required for survival. In our model, this ‘decision’ point for promoting PCN production or stress resistance is located downstream of and just above . However, a test with the stress factor rifampicin shows no significant inhibition of Pip production, suggesting that stress factors may also target other and so far unknown protagonists of the PCN signalling cascade.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.043075-0
2011-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/2/398.html?itemId=/content/journal/micro/10.1099/mic.0.043075-0&mimeType=html&fmt=ahah

References

  1. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1997 Currents Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  2. Bacon C. W., Porter J. K., Norred W. P., Leslie J. F. 1996; Production of fusaric acid by Fusarium species. Appl Environ Microbiol 62:4039–4043
    [Google Scholar]
  3. Caldwell C. C., Chen Y., Goetzmann H. S., Hao Y., Borchers M. T., Hassett D. J., Young L. R., Mavrodi D., Thomashow L. other authors 2009; Pseudomonas aeruginosa exotoxin pyocyanin causes cystic fibrosis airway pathogenesis. Am J Pathol 175:2473–2488
    [Google Scholar]
  4. Chater K. F. 2006; Streptomyces inside-out: a new perspective on the bacteria that provide us with antibiotics. Philos Trans R Soc Lond B Biol Sci 361:761–768
    [Google Scholar]
  5. Chin-A-Woeng T. F. C., Bloemberg G. V., van der Bij A. J., van der Drift K. M. G. M., Schripsema J., Kroon B., Scheffer R. J., Keel C., Bakker P. A. H. M. other authors 1998; Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici. Mol Plant Microbe Interact 11:1069–1077
    [Google Scholar]
  6. Chin-A-Woeng T. F., Bloemberg G. V., Lugtenberg B. J. 2003; Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytol 157:503–523
    [Google Scholar]
  7. Cummins J., Reen F. J., Baysse C., Mooij M. J., O'Gara F. 2009; Subinhibitory concentrations of the cationic antimicrobial peptide colistin induce the pseudomonas quinolone signal in Pseudomonas aeruginosa. Microbiology 155:2826–2837
    [Google Scholar]
  8. Davies J., Spiegelman G. B., Yim G. 2006; The world of subinhibitory antibiotic concentrations. Curr Opin Microbiol 9:445–453
    [Google Scholar]
  9. Dietrich L. E., Price-Whelan A., Petersen A., Whiteley M., Newman D. K. 2006; The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa. Mol Microbiol 61:1308–1321
    [Google Scholar]
  10. Dietrich L. E., Teal T. K., Price-Whelan A., Newman D. K. 2008; Redox-active antibiotics control gene expression and community behavior in divergent bacteria. Science 321:1203–1206
    [Google Scholar]
  11. Fajardo A., Martinez J. L. 2008; Antibiotics as signals that trigger specific bacterial responses. Curr Opin Microbiol 11:161–167
    [Google Scholar]
  12. Fuqua C., Parsek M. R., Greenberg E. P. 2001; Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet 35:439–468
    [Google Scholar]
  13. Girard G., van Rij E. T., Lugtenberg B. J., Bloemberg G. V. 2006a; Regulatory roles of psrA and rpoS in phenazine-1-carboxamide synthesis by Pseudomonas chlororaphis PCL1391. Microbiology 152:43–58
    [Google Scholar]
  14. Girard G., Barends S., Rigali S., van Rij E. T., Lugtenberg B. J., Bloemberg G. V. 2006b; Pip, a novel activator of phenazine biosynthesis in Pseudomonas chlororaphis PCL1391. J Bacteriol 188:8283–8293
    [Google Scholar]
  15. Haas D., Defago G. 2005; Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319
    [Google Scholar]
  16. Hassett D. J., Ma J. F., Elkins J. G., McDermott T. R., Ochsner U. A., West S. E., Huang C. T., Fredericks J., Burnett S. other authors 1999; Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide. Mol Microbiol 34:1082–1093
    [Google Scholar]
  17. Heeb S., Blumer C., Haas D. 2002; Regulatory RNA as mediator in GacA/RsmA-dependent global control of exoproduct formation in Pseudomonas fluorescens CHA0. J Bacteriol 184:1046–1056
    [Google Scholar]
  18. Jorgensen F., Bally M., Chapon-Herve V., Michel G., Lazdunski A., Williams P., Stewart G. S. 1999; RpoS-dependent stress tolerance in Pseudomonas aeruginosa. Microbiology 145:835–844
    [Google Scholar]
  19. Laville J., Voisard C., Keel C., Maurhofer M., Defago G., Haas D. 1992; Global control in Pseudomonas fluorescens mediating antibiotic synthesis and suppression of black root rot of tobacco. Proc Natl Acad Sci U S A 89:1562–1566
    [Google Scholar]
  20. Liang H., Li L., Dong Z., Surette M. G., Duan K. 2008; The YebC family protein PA0964 negatively regulates the Pseudomonas aeruginosa quinolone signal system and pyocyanin production. J Bacteriol 190:6217–6227
    [Google Scholar]
  21. Linares J. F., Gustafsson I., Baquero F., Martinez J. L. 2006; Antibiotics as intermicrobial signaling agents instead of weapons. Proc Natl Acad Sci U S A 103:19484–19489
    [Google Scholar]
  22. Miller M. B., Bassler B. L. 2001; Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199
    [Google Scholar]
  23. Milton D. L., Hardman A., Camara M., Chhabra S. R., Bycroft B. W., Stewart G. S., Williams P. 1997; Quorum sensing in Vibrio anguillarum : characterization of the vanI/vanR locus and identification of the autoinducer N -(3-oxodecanoyl)-l-homoserine lactone. J Bacteriol 179:3004–3012
    [Google Scholar]
  24. Mitova M. I., Lang G., Wiese J., Imhoff J. F. 2008; Subinhibitory concentrations of antibiotics induce phenazine production in a marine Streptomyces sp. J Nat Prod 71:824–827
    [Google Scholar]
  25. Munns R. 2005; Genes and salt tolerance: bringing them together. New Phytol 167:645–663
    [Google Scholar]
  26. Price-Whelan A., Dietrich L. E., Newman D. K. 2006; Rethinking ‘secondary’ metabolism: physiological roles for phenazine antibiotics. Nat Chem Biol 2:71–78
    [Google Scholar]
  27. Price-Whelan A., Dietrich L. E., Newman D. K. 2007; Pyocyanin alters redox homeostasis and carbon flux through central metabolic pathways in Pseudomonas aeruginosa PA14. J Bacteriol 189:6372–6381
    [Google Scholar]
  28. Raaijmakers J. M., Vlami M., de Souza J. T. 2002; Antibiotic production by bacterial biocontrol agents. Antonie van Leeuwenhoek 81:537–547
    [Google Scholar]
  29. Ramos-Gonzalez M. I., Molin S. 1998; Cloning, sequencing, and phenotypic characterization of the rpoS gene from Pseudomonas putida KT2440. J Bacteriol 180:3421–3431
    [Google Scholar]
  30. Reimmann C., Beyeler M., Latifi A., Winteler H., Foglino M., Lazdunski A., Haas D. 1997; The global activator GacA of Pseudomonas aeruginosa PAO positively controls the production of the autoinducer N -butyryl-homoserine lactone and the formation of the virulence factors pyocyanin, cyanide, and lipase. Mol Microbiol 24:309–319
    [Google Scholar]
  31. Sacherer P., Defago G., Haas D. 1994; Extracellular protease and phospholipase C are controlled by the global regulatory gene gacA in the biocontrol strain Pseudomonas fluorescens CHA0. FEMS Microbiol Lett 116:155–160
    [Google Scholar]
  32. Sambrook J., Russell D. 2001 Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  33. Sarniguet A., Kraus J., Henkels M. D., Muehlchen A. M., Loper J. E. 1995; The sigma factor sigma s affects antibiotic production and biological control activity of Pseudomonas fluorescens Pf-5. Proc Natl Acad Sci U S A 92:12255–12259
    [Google Scholar]
  34. Shen L., Shi Y., Zhang D., Wei J., Surette M. G., Duan K. 2008; Modulation of secreted virulence factor genes by subinhibitory concentrations of antibiotics in Pseudomonas aeruginosa. J Microbiol 46:441–447
    [Google Scholar]
  35. Skindersoe M. E., Alhede M., Phipps R., Yang L., Jensen P. O., Rasmussen T. B., Bjarnsholt T., Tolker-Nielsen T., Hoiby N. other authors 2008; Effects of antibiotics on quorum sensing in Pseudomonas aeruginosa. Antimicrob Agents Chemother 52:3648–3663
    [Google Scholar]
  36. Suh S. J., Silo-Suh L., Woods D. E., Hassett D. J., West S. E., Ohman D. E. 1999; Effect of rpoS mutation on the stress response and expression of virulence factors in Pseudomonas aeruginosa. J Bacteriol 181:3890–3897
    [Google Scholar]
  37. van Rij E. T., Wesselink M., Chin A. W. T. F., Bloemberg G. V., Lugtenberg B. J. 2004; Influence of environmental conditions on the production of phenazine-1-carboxamide by Pseudomonas chlororaphis PCL1391. Mol Plant Microbe Interact 17:557–566
    [Google Scholar]
  38. van Rij E. T., Girard G., Lugtenberg B. J., Bloemberg G. V. 2005; Influence of fusaric acid on phenazine-1-carboxamide synthesis and gene expression of Pseudomonas chlororaphis strain PCL1391. Microbiology 151:2805–2814
    [Google Scholar]
  39. Zuber S., Carruthers F., Keel C., Mattart A., Blumer C., Pessi G., Gigot-Bonnefoy C., Schnider-Keel U., Heeb S. other authors 2003; GacS sensor domains pertinent to the regulation of exoproduct formation and to the biocontrol potential of Pseudomonas fluorescens CHA0. Mol Plant Microbe Interact 16:634–644
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.043075-0
Loading
/content/journal/micro/10.1099/mic.0.043075-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error