1887

Abstract

The SOS response is governed by the transcriptional regulator LexA and is elicited in many bacterial species in response to DNA damaging conditions. Induction of the SOS response is mediated by autocleavage of the LexA repressor resulting in a C-terminal dimerization domain (CTD) and an N-terminal DNA-binding domain (NTD) known to retain some DNA-binding activity. The proteases responsible for degrading the LexA domains have been identified in as ClpXP and Lon. Here, we show that in the human and animal pathogen the ClpXP and ClpCP proteases contribute to degradation of the NTD and to a lesser degree the CTD. In the absence of the proteolytic subunit, ClpP, or one or both of the Clp ATPases, ClpX and ClpC, the LexA domains were stabilized after autocleavage. Production of a stabilized variant of the NTD interfered with mitomycin-mediated induction of expression while leaving unaffected, and also significantly reduced SOS-induced mutagenesis. Our results show that sequential proteolysis of LexA is conserved in and that the NTD may differentially regulate a subset of genes in the SOS regulon.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.043794-0
2011-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/3/677.html?itemId=/content/journal/micro/10.1099/mic.0.043794-0&mimeType=html&fmt=ahah

References

  1. Anderson K. L., Roberts C., Disz T., Vonstein V., Hwang K., Overbeek R., Olson P. D., Projan S. J., Dunman P. M. 2006; Characterization of the Staphylococcus aureus heat shock, cold shock, stringent, and SOS responses and their effects on log-phase mRNA turnover. J Bacteriol 188:6739–6756
    [Google Scholar]
  2. Beaber J. W., Hochhut B., Waldor M. K. 2004; SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature 427:72–74
    [Google Scholar]
  3. Bertrand-Burggraf E., Hurstel S., Daune M., Schnarr M. 1987; Promoter properties and negative regulation of the uvrA gene by the LexA repressor and its amino-terminal DNA binding domain. J Mol Biol 193:293–302
    [Google Scholar]
  4. Bisognano C., Kelley W. L., Estoppey T., Francois P., Schrenzel J., Li D., Lew D. P., Hooper D. C., Cheung A. L., Vaudaux P. 2004; A recA –LexA-dependent pathway mediates ciprofloxacin-induced fibronectin binding in Staphylococcus aureus . J Biol Chem 279:9064–9071
    [Google Scholar]
  5. Boneca I. G., Chiosis G. 2003; Vancomycin resistance: occurrence, mechanisms and strategies to combat it. Expert Opin Ther Targets 7:311–328
    [Google Scholar]
  6. Butala M., Zgur-Bertok D., Busby S. J. 2009; The bacterial LexA transcriptional repressor. Cell Mol Life Sci 66:82–93
    [Google Scholar]
  7. Charpentier E., Anton A. I., Barry P., Alfonso B., Fang Y., Novick R. P. 2004; Novel cassette-based shuttle vector system for Gram-positive bacteria. Appl Environ Microbiol 70:6076–6085
    [Google Scholar]
  8. Cheo D. L., Bayles K. W., Yasbin R. E. 1991; Cloning and characterization of DNA damage-inducible promoter regions from Bacillus subtilis . J Bacteriol 173:1696–1703
    [Google Scholar]
  9. Cirz R. T., Chin J. K., Andes D. R., de Crécy-Lagard V., Craig W. A., Romesberg F. E. 2005; Inhibition of mutation and combating the evolution of antibiotic resistance. PLoS Biol 3:e176
    [Google Scholar]
  10. Cirz R. T., Jones M. B., Gingles N. A., Minogue T. D., Jarrahi B., Peterson S. N., Romesberg F. E. 2007; Complete and SOS-mediated response of Staphylococcus aureus to the antibiotic ciprofloxacin. J Bacteriol 189:531–539
    [Google Scholar]
  11. Erill I., Campoy S., Barbé J. 2007; Aeons of distress: an evolutionary perspective on the bacterial SOS response. FEMS Microbiol Rev 31:637–656
    [Google Scholar]
  12. Flynn J. M., Levchenko I., Seidel M., Wickner S. H., Sauer R. T., Baker T. A. 2001; Overlapping recognition determinants within the ssrA degradation tag allow modulation of proteolysis. Proc Natl Acad Sci U S A 98:10584–10589
    [Google Scholar]
  13. Frees D., Qazi S. N., Hill P. J., Ingmer H. 2003; Alternative roles of ClpX and ClpP in Staphylococcus aureus stress tolerance and virulence. Mol Microbiol 48:1565–1578
    [Google Scholar]
  14. Frees D., Chastanet A., Qazi S., Sørensen K., Hill P., Msadek T., Ingmer H. 2004; Clp ATPases are required for stress tolerance, intracellular replication and biofilm formation in Staphylococcus aureus . Mol Microbiol 54:1445–1462
    [Google Scholar]
  15. Goerke C., Köller J., Wolz C. 2006; Ciprofloxacin and trimethoprim cause phage induction and virulence modulation in Staphylococcus aureus . Antimicrob Agents Chemother 50:171–177
    [Google Scholar]
  16. Groban E. S., Johnson M. B., Banky P., Burnett P. G., Calderon G. L., Dwyer E. C., Fuller S. N., Gebre B., King L. M. other authors 2005; Binding of the Bacillus subtilis LexA protein to the SOS operator. Nucleic Acids Res 33:6287–6295
    [Google Scholar]
  17. Haijema B. J., van Sinderen D., Winterling K., Kooistra J., Venema G., Hamoen L. W. 1996; Regulated expression of the dinR and recA genes during competence development and SOS induction in Bacillus subtilis . Mol Microbiol 22:75–85
    [Google Scholar]
  18. Hurstel S., Granger-Schnarr M., Daune M., Schnarr M. 1986; In vitro binding of LexA repressor to DNA: evidence for the involvement of the amino-terminal domain. EMBO J 5:793–798
    [Google Scholar]
  19. Kawai Y., Moriya S., Ogasawara N. 2003; Identification of a protein, YneA, responsible for cell division suppression during the SOS response in Bacillus subtilis . Mol Microbiol 47:1113–1122
    [Google Scholar]
  20. Kelley W. L. 2006; Lex marks the spot: the virulent side of SOS and a closer look at the LexA regulon. Mol Microbiol 62:1228–1238
    [Google Scholar]
  21. Kreiswirth B. N., Löfdahl S., Betley M. J., O'Reilly M., Schlievert P. M., Bergdoll M. S., Novick R. P. 1983; The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature 305:709–712
    [Google Scholar]
  22. Lewin C. S., Amyes S. G. 1991; The role of the SOS response in bacteria exposed to zidovudine or trimethoprim. J Med Microbiol 34:329–332
    [Google Scholar]
  23. Lindsay J. A., Ruzin A., Ross H. F., Kurepina N., Novick R. P. 1998; The gene for toxic shock toxin is carried by a family of mobile pathogenicity islands in Staphylococcus aureus . Mol Microbiol 29:527–543
    [Google Scholar]
  24. Little J. W., Gellert M. 1983; The SOS regulatory system: control of its state by the level of RecA protease. J Mol Biol 167:791–808
    [Google Scholar]
  25. Little J. W., Hill S. A. 1985; Deletions within a hinge region of a specific DNA-binding protein. Proc Natl Acad Sci U S A 82:2301–2305
    [Google Scholar]
  26. Little J. W., Mount D. W., Yanisch-Perron C. R. 1981; Purified LexA protein is a repressor of the recA and lexA genes. Proc Natl Acad Sci U S A 78:4199–4203
    [Google Scholar]
  27. Maiques E., Úbeda C., Campoy S., Salvador N., Lasa I., Novick R. P., Barbé J., Penadés J. R. 2006; β -Lactam antibiotics induce the SOS response and horizontal transfer of virulence factors in Staphylococcus aureus . J Bacteriol 188:2726–2729
    [Google Scholar]
  28. Mesak L. R., Miao V., Davies J. 2008; Effects of subinhibitory concentrations of antibiotics on SOS and DNA repair gene expression in Staphylococcus aureus . Antimicrob Agents Chemother 52:3394–3397
    [Google Scholar]
  29. Michel A., Agerer F., Hauck C. R., Herrmann M., Ullrich J., Hacker J., Ohlsen K. 2006; Global regulatory impact of ClpP protease of Staphylococcus aureus on regulons involved in virulence, oxidative stress response, autolysis, and DNA repair. J Bacteriol 188:5783–5796
    [Google Scholar]
  30. Miller C., Thomsen L. E., Gaggero C., Mosseri R., Ingmer H., Cohen S. N. 2004; SOS response induction by β -lactams and bacterial defense against antibiotic lethality. Science 305:1629–1631
    [Google Scholar]
  31. Neher S. B., Flynn J. M., Sauer R. T., Baker T. A. 2003; Latent ClpX-recognition signals ensure LexA destruction after DNA damage. Genes Dev 17:1084–1089
    [Google Scholar]
  32. Niu G., Okinaga T., Qi F., Merritt J. 2010; The Streptococcus mutans IrvR repressor is a CI-like regulator that functions through autocleavage and Clp-dependent proteolysis. J Bacteriol 192:1586–1595
    [Google Scholar]
  33. Novick R. 1967; Properties of a cryptic high-frequency transducing phage in Staphylococcus aureus . Virology 33:155–166
    [Google Scholar]
  34. Novick R. P. 2003; Mobile genetic elements and bacterial toxinoses: the superantigen-encoding pathogenicity islands of Staphylococcus aureus . Plasmid 49:93–105
    [Google Scholar]
  35. O'Callaghan C. H., Morris A., Kirby S. M., Shingler A. H. 1972; Novel method for detection of β -lactamases by using a chromogenic cephalosporin substrate. Antimicrob Agents Chemother 1:283–288
    [Google Scholar]
  36. Ogino H., Teramoto H., Inui M., Yukawa H. 2008; DivS, a novel SOS-inducible cell-division suppressor in Corynebacterium glutamicum . Mol Microbiol 67:597–608
    [Google Scholar]
  37. Ruzin A., Lindsay J., Novick R. P. 2001; Molecular genetics of SaPI1 – a mobile pathogenicity island in Staphylococcus aureus . Mol Microbiol 41:365–377
    [Google Scholar]
  38. Sassanfar M., Roberts J. W. 1990; Nature of the SOS-inducing signal in Escherichia coli . The involvement of DNA replication. J Mol Biol 212:79–96
    [Google Scholar]
  39. Savijoki K., Ingmer H., Frees D., Vogensen F. K., Palva A., Varmanen P. 2003; Heat and DNA damage induction of the LexA-like regulator HdiR from Lactococcus lactis is mediated by RecA and ClpP. Mol Microbiol 50:609–621
    [Google Scholar]
  40. Úbeda C., Maiques E., Knecht E., Lasa I., Novick R. P., Penadés J. R. 2005; Antibiotic-induced SOS response promotes horizontal dissemination of pathogenicity island-encoded virulence factors in staphylococci. Mol Microbiol 56:836–844
    [Google Scholar]
  41. Úbeda C., Maiques E., Barry P., Matthews A., Tormo M. A., Lasa I., Novick R. P., Penadés J. R. 2008; SaPI mutations affecting replication and transfer and enabling autonomous replication in the absence of helper phage. Mol Microbiol 67:493–503
    [Google Scholar]
  42. van der Veen S., van Schalkwijk S., Molenaar D., de Vos W. M., Abee T., Wells-Bennik M. H. 2010; The SOS response of Listeria monocytogenes is involved in stress resistance and mutagenesis. Microbiology 156:374–384
    [Google Scholar]
  43. Weel-Sneve R., Bjørås M., Kristiansen K. I. 2008; Overexpression of the LexA-regulated tisAB RNA in E. coli inhibits SOS functions; implications for regulation of the SOS response. Nucleic Acids Res 36:6249–6259
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.043794-0
Loading
/content/journal/micro/10.1099/mic.0.043794-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error