1887

Abstract

is the causative agent of non-gonococcal, chlamydia-negative urethritis in men and has been linked to reproductive tract disease syndromes in women. As with other mycoplasmas, lacks many regulatory genes because of its streamlined genome and total dependence on a parasitic existence. Therefore, it is important to understand how gene regulation occurs in , particularly in response to environmental signals likely to be encountered . In this study, we developed an oligonucleotide-based microarray to investigate transcriptional changes in following osmotic shock. Using a physiologically relevant osmolarity condition (0.3 M sodium chloride), we identified 39 upregulated and 72 downregulated genes. Of the upregulated genes, 21 were of unknown function and 15 encoded membrane-associated proteins. The majority of downregulated genes encoded enzymes involved in energy metabolism and components of the protein translation process. These data provide insights into the response of to hyperosmolarity conditions and identify candidate genes that may contribute to mycoplasma survival in the urogenital tract.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.043984-0
2011-02-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/2/548.html?itemId=/content/journal/micro/10.1099/mic.0.043984-0&mimeType=html&fmt=ahah

References

  1. Alvarez R. A., Blaylock M. W., Baseman J. B. 2003; Surface localized glyceraldehyde-3-phosphate dehydrogenase of Mycoplasma genitalium binds mucin. Mol Microbiol 48:1417–1425
    [Google Scholar]
  2. Atichartpongkul S., Loprasert S., Vattanaviboon P., Whangsuk W., Helmann J. D., Mongkolsuk S. 2001; Bacterial Ohr and OsmC paralogues define two protein families with distinct functions and patterns of expression. Microbiology 147:1775–1782
    [Google Scholar]
  3. Baseman J. B. 1993; The cytadhesins of Mycoplasma pneumoniae and M. genitalium . Subcell Biochem 20:243–259
    [Google Scholar]
  4. Baseman J. B., Tully J. G. 1997; Mycoplasmas: sophisticated, reemerging, and burdened by their notoriety. Emerg Infect Dis 3:21–32
    [Google Scholar]
  5. Baseman J. B., Lange M., Criscimagna N., Giron J., Thomas C. 1995; Interplay between mycoplasmas and host target cells. Microb Pathog 19:105–116
    [Google Scholar]
  6. Benders G. A., Powell B. C., Hutchison C. A. 2005; Transcriptional analysis of the conserved ftsZ gene cluster in Mycoplasma genitalium and Mycoplasma pneumoniae . J Bacteriol 187:4542–4551
    [Google Scholar]
  7. Blaylock M. W., Musatovova O., Baseman J. G., Baseman J. B. 2004; Determination of infectious load of Mycoplasma genitalium in clinical samples of human vaginal cells. J Clin Microbiol 42:746–752
    [Google Scholar]
  8. Cecchini K. R., Gorton T. S., Geary S. J. 2007; Transcriptional responses of Mycoplasma gallisepticum strain R in association with eukaryotic cells. J Bacteriol 189:5803–5807
    [Google Scholar]
  9. Cheung K. J., Badarinarayana V., Selinger D. W., Janse D., Church G. M. 2003; A microarray-based antibiotic screen identifies a regulatory role for supercoiling in the osmotic stress response of Escherichia coli . Genome Res 13:206–215
    [Google Scholar]
  10. Dorman C. J. 1991; DNA supercoiling and environmental regulation of gene expression in pathogenic bacteria. Infect Immun 59:745–749
    [Google Scholar]
  11. Fraser C. M., Gocayne J. D., White O., Adams M. D., Clayton R. A., Fleischmann R. D., Bult C. J., Kerlavage A. R., Sutton G. other authors 1995; The minimal gene complement of Mycoplasma genitalium. Science 270:397–403
    [Google Scholar]
  12. Glass J. I., Assad-Garcia N., Alperovich N., Yooseph S., Lewis M. R., Maruf M., Hutchison C. A., Smith H. O., Venter J. C. 2006; Essential genes of a minimal bacterium. Proc Natl Acad Sci U S A 103:425–430
    [Google Scholar]
  13. Güell M., van Noort V., Yus E., Chen W. H., Leigh-Bell J., Michalodimitrakis K., Yamada T., Arumugam M., Doerks T. other authors 2009; Transcriptome complexity in a genome-reduced bacterium. Science 326:1268–1271
    [Google Scholar]
  14. Himmelreich R., Plagens H., Hilbert H., Reiner B., Herrmann R. 1997; Comparative analysis of the genomes of the bacteria Mycoplasma pneumoniae and Mycoplasma genitalium . Nucleic Acids Res 25:701–712
    [Google Scholar]
  15. Jensen J. S. 2004; Mycoplasma genitalium : the aetiological agent of urethritis and other sexually transmitted diseases. J Eur Acad Dermatol Venereol 18:1–11
    [Google Scholar]
  16. Kempf B., Bremer E. 1998; Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol 170:319–330
    [Google Scholar]
  17. Kingsford C. L., Ayanbule K., Salzberg S. 2007; Rapid, accurate, computational discovery of Rho-independent transcription terminators illuminates their relationship to DNA uptake. Genome Biol 8:R22
    [Google Scholar]
  18. Madsen M. L., Nettleton D., Thacker E. L., Edwards R., Minion F. C. 2006a; Transcriptional profiling of Mycoplasma hyopneumoniae during heat shock using microarrays. Infect Immun 74:160–166
    [Google Scholar]
  19. Madsen M. L., Nettleton D., Thacker E. L., Minion F. C. 2006b; Transcriptional profiling of Mycoplasma hyopneumoniae during iron depletion using microarrays. Microbiology 152:937–944
    [Google Scholar]
  20. Madsen M. L., Puttamreddy S., Thacker E. L., Carruthers M. D., Minion F. C. 2008; Transcriptome changes in Mycoplasma hyopneumoniae during infection. Infect Immun 76:658–663
    [Google Scholar]
  21. Mekalanos J. J. 1992; Environmental signals controlling expression of virulence determinants in bacteria. J Bacteriol 174:1–7
    [Google Scholar]
  22. Meury J. 1994; Immediate and transient inhibition of the respiration of Escherichia coli under hyperosmotic shock. FEMS Microbiol Lett 121:281–286
    [Google Scholar]
  23. Musatovova O., Dhandayuthapani S., Baseman J. B. 2006; Transcriptional heat shock response in the smallest known self-replicating cell, Mycoplasma genitalium . J Bacteriol 188:2845–2855
    [Google Scholar]
  24. Okada Y., Makino S., Tobe T., Okada N., Yamazaki S. 2002; Cloning of rel from Listeria monocytogenes as an osmotolerance involvement gene. Appl Environ Microbiol 68:1541–1547
    [Google Scholar]
  25. Schafer E. R., Oneal M. J., Madsen M. L., Minion F. C. 2007; Global transcriptional analysis of Mycoplasma hyopneumoniae following exposure to hydrogen peroxide. Microbiology 153:3785–3790
    [Google Scholar]
  26. Sippel K. H., Robbins A., Reutzel R., Boehlein S., Namiki K., Goodison S., Agbandje-McKenna M., Rosser C., McKenna R. 2009; Structural insights into the extracytoplasmic thiamine-binding lipoprotein p37 of Mycoplasma hyorhinis . J Bacteriol 191:2585–2592
    [Google Scholar]
  27. Storey J. D., Tibshirani R. 2003; Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 100:9440–9445
    [Google Scholar]
  28. Ueno P. M., Timenetsky J., Centonze V. E., Wewer J. J., Cagle M., Stein M. A., Krishnan M., Baseman J. B. 2008; Interaction of Mycoplasma genitalium with host cells: evidence for nuclear localization. Microbiology 154:3033–3041
    [Google Scholar]
  29. Wang J. C. 1996; DNA topoisomerases. Annu Rev Biochem 65:635–692
    [Google Scholar]
  30. Washio T., Sasayama J., Tomita M. 1998; Analysis of complete genomes suggests that many prokaryotes do not rely on hairpin formation in transcription termination. Nucleic Acids Res 26:5456–5463
    [Google Scholar]
  31. Weber A., Jung K. 2002; Profiling early osmostress-dependent gene expression in Escherichia coli using DNA microarrays. J Bacteriol 184:5502–5507
    [Google Scholar]
  32. Weiner J., Herrmann R., Browning G. F. 2000; Transcription in Mycoplasma pneumoniae . Nucleic Acids Res 28:4488–4496
    [Google Scholar]
  33. Weiner J., Zimmerman C. U., Gohlmann H. W. H., Herrmann R. 2003; Transcription profiles of the bacterium Mycoplasma pneumoniae grown at different temperatures. Nucleic Acids Res 31:6306–6320
    [Google Scholar]
  34. Yus E., Maier T., Michalodimitrakis K., van Noort V., Yamada T., Chen W. H., Wodke J. A., Güell M., Martínez S.other authors 2009; Impact of genome reduction on bacterial metabolism and its regulation. Science 326:1263–1268
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.043984-0
Loading
/content/journal/micro/10.1099/mic.0.043984-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error