1887

Abstract

It is becoming increasingly clear that the so-called remnant organelles of microaerophilic unicellular eukaryotes, hydrogenosomes and mitosomes, are significantly reduced versions of mitochondria. They normally lack most of the classic mitochondrial attributes, such as an electron transport chain and a genome. While hydrogenosomes generate energy by substrate-level phosphorylation along a hydrogen-producing fermentation pathway, involving iron–sulfur-cluster-containing enzymes pyruvate : ferredoxin oxidoreductase (PFO) and hydrogenase, whether mitosomes participate in ATP synthesis is currently unknown. Both enzymes were recently described in the mitosome-bearing diplomonad , also shown to produce molecular hydrogen. As published data show that giardial PFO is a membrane-associated enzyme, it could be suspected that PFO and hydrogenase operate in the mitosome, in which case the latter would by definition be a hydrogenosome. Using antibodies against recombinant enzymes of , it was shown by Western blot analysis of subcellular fractions and by confocal immunofluorescence microscopy of whole cells that neither PFO nor hydrogenase localize to the mitosome, but are mostly found in the cytosol. The giardial mitosome is known to play a role in iron–sulfur cluster assembly and to contain chaperones Cpn60 and mtHsp70, which assist, in particular, in protein import. In mitochondria, transmembrane potential is essential for this complex process. Using MitoTracker Red and organelle-specific antibodies, transmembrane potential could be detected in the hydrogenosome, but not in the mitosome. These results provide further evidence that the mitosome is one of the most highly reduced mitochondrial homologues.

Funding
This study was supported by the:
  • Marie Curie Incoming International Fellowship FP6 (Award MIF1-CT-2006 039819)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.044784-0
2011-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/6/1602.html?itemId=/content/journal/micro/10.1099/mic.0.044784-0&mimeType=html&fmt=ahah

References

  1. Abodeely M., DuBois K. N., Hehl A., Stefanic S., Sajid M., DeSouza W., Attias M., Engel J. C., Hsieh I. et al. ( 2009). A contiguous compartment functions as endoplasmic reticulum and endosome/lysosome in Giardia lamblia. . Eukaryot Cell 8:1665–1676 [View Article][PubMed]
    [Google Scholar]
  2. Aguilera P., Barry T., Tovar J. ( 2008). Entamoeba histolytica mitosomes: organelles in search of a function. Exp Parasitol 118:10–16 [View Article][PubMed]
    [Google Scholar]
  3. Arisue N., Hasegawa M., Hashimoto T. ( 2005). Root of the Eukaryota tree as inferred from combined maximum likelihood analyses of multiple molecular sequence data. Mol Biol Evol 22:409–420 [View Article][PubMed]
    [Google Scholar]
  4. Biagini G. A., Lloyd D., Kirk K., Edwards M. R. ( 2000). The membrane potential of Giardia intestinalis. . FEMS Microbiol Lett 192:153–157 [View Article][PubMed]
    [Google Scholar]
  5. Bradley P. J., Lahti C. J., Plümper E., Johnson P. J. ( 1997). Targeting and translocation of proteins into the hydrogenosome of the protist Trichomonas: similarities with mitochondrial protein import. EMBO J 16:3484–3493 [View Article][PubMed]
    [Google Scholar]
  6. Cavalier-Smith T. ( 1987). Eukaryotes with no mitochondria. Nature 326:332–333 [View Article][PubMed]
    [Google Scholar]
  7. Chan K. W., Slotboom D. J., Cox S., Embley T. M., Fabre O., van der Giezen M., Harding M., Horner D. S., Kunji E. R., León-Avila G. ( 2005). A novel ADP/ATP transporter in the mitosome of the microaerophilic human parasite Entamoeba histolytica. . Curr Biol 15:737–742 [View Article][PubMed]
    [Google Scholar]
  8. Dandekar T., Schuster S., Snel B., Huynen M., Bork P. ( 1999). Pathway alignment: application to the comparative analysis of glycolytic enzymes. Biochem J 343:115–124 [View Article][PubMed]
    [Google Scholar]
  9. Delgado-Viscogliosi P., Brugerolle G., Viscogliosi E. ( 1996). Tubulin post-translational modifications in the primitive protist Trichomonas vaginalis. . Cell Motil Cytoskeleton 33:288–297 [View Article][PubMed]
    [Google Scholar]
  10. Dolezal P., Smíd O., Rada P., Zubácová Z., Bursać D., Suták R., Nebesárová J., Lithgow T., Tachezy J. ( 2005). Giardia mitosomes and trichomonad hydrogenosomes share a common mode of protein targeting. Proc Natl Acad Sci U S A 102:10924–10929 [View Article][PubMed]
    [Google Scholar]
  11. Ellis J. E., Williams R., Cole D., Cammack R., Lloyd D. ( 1993). Electron transport components of the parasitic protozoon Giardia lamblia. . FEBS Lett 325:196–200 [View Article][PubMed]
    [Google Scholar]
  12. Embley T. M. ( 2006). Multiple secondary origins of the anaerobic lifestyle in eukaryotes. Philos Trans R Soc Lond B Biol Sci 361:1055–1067 [View Article][PubMed]
    [Google Scholar]
  13. Embley T. M., Martin W. ( 2006). Eukaryotic evolution, changes and challenges. Nature 440:623–630 [View Article][PubMed]
    [Google Scholar]
  14. Embley T. M., van der Giezen M., Horner D. S., Dyal P. L., Bell S., Foster P. G. ( 2003). Hydrogenosomes, mitochondria and early eukaryotic evolution. IUBMB Life 55:387–395 [View Article][PubMed]
    [Google Scholar]
  15. Emelyanov V. V. ( 2001). Evolutionary relationship of Rickettsiae and mitochondria. FEBS Lett 501:11–18 [View Article][PubMed]
    [Google Scholar]
  16. Emelyanov V. V. ( 2003a). Phylogenetic affinity of a Giardia lamblia cysteine desulfurase conforms to canonical pattern of mitochondrial ancestry. FEMS Microbiol Lett 226:257–266 [View Article][PubMed]
    [Google Scholar]
  17. Emelyanov V. V. ( 2003b). Common evolutionary origin of mitochondrial and rickettsial respiratory chains. Arch Biochem Biophys 420:130–141 [View Article][PubMed]
    [Google Scholar]
  18. Emelyanov V. V. ( 2003c). Mitochondrial connection to the origin of the eukaryotic cell. Eur J Biochem 270:1599–1618 [View Article][PubMed]
    [Google Scholar]
  19. Emelyanov V. V. ( 2007). Constantin Merezhkowsky and the Endocaryotic hypothesis. Origin of Mitochondria and Hydrogenosomes201–237 Martin W. F., Müller M. Berlin, Heidelberg: Springer-Verlag; [View Article]
    [Google Scholar]
  20. Fitzpatrick D. A., Creevey C. J., McInerney J. O. ( 2006). Genome phylogenies indicate a meaningful alpha-proteobacterial phylogeny and support a grouping of the mitochondria with the Rickettsiales . Mol Biol Evol 23:74–85 [View Article][PubMed]
    [Google Scholar]
  21. Gill E. E., Diaz-Triviño S., Barberà M. J., Silberman J. D., Stechmann A., Gaston D., Tamas I., Roger A. J. ( 2007). Novel mitochondrion-related organelles in the anaerobic amoeba Mastigamoeba balamuthi. . Mol Microbiol 66:1306–1320 [View Article][PubMed]
    [Google Scholar]
  22. Gray M. W., Lang B. F., Cedergren R., Golding G. B., Lemieux C., Sankoff D., Turmel M., Brossard N., Delage E. et al. ( 1998). Genome structure and gene content in protist mitochondrial DNAs. Nucleic Acids Res 26:865–878 [View Article][PubMed]
    [Google Scholar]
  23. Gupta R. S. ( 1998). Protein phylogenies and signature sequences: a reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiol Mol Biol Rev 62:1435–1491[PubMed]
    [Google Scholar]
  24. Hampl V., Silberman J. D., Stechmann A., Diaz-Triviño S., Johnson P. J., Roger A. J. ( 2008). Genetic evidence for a mitochondriate ancestry in the ‘amitochondriate’ flagellate Trimastix pyriformis. . PLoS ONE 3:e1383 [View Article][PubMed]
    [Google Scholar]
  25. Hampl V., Hug L., Leigh J. W., Dacks J. B., Lang B. F., Simpson A. G., Roger A. J. ( 2009). Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups”. Proc Natl Acad Sci U S A 106:3859–3864 [View Article][PubMed]
    [Google Scholar]
  26. Hirt R. P., Lal K., Pinxteren J., Warwicker J., Healy B., Coombs G. H., Field M. C., Embley T. M. ( 2003). Biochemical and genetic evidence for a family of heterotrimeric G-proteins in Trichomonas vaginalis. . Mol Biochem Parasitol 129:179–189 [View Article][PubMed]
    [Google Scholar]
  27. Hjort K., Goldberg A. V., Tsaousis A. D., Hirt R. P., Embley T. M. ( 2010). Diversity and reductive evolution of mitochondria among microbial eukaryotes. Philos Trans R Soc Lond B Biol Sci 365:713–727 [View Article][PubMed]
    [Google Scholar]
  28. Horner D. S., Hirt R. P., Embley T. M. ( 1999). A single eubacterial origin of eukaryotic pyruvate : ferredoxin oxidoreductase genes: implications for the evolution of anaerobic eukaryotes. Mol Biol Evol 16:1280–1291[PubMed] [CrossRef]
    [Google Scholar]
  29. Hug L. A., Stechmann A., Roger A. J. ( 2010). Phylogenetic distributions and histories of proteins involved in anaerobic pyruvate metabolism in eukaryotes. Mol Biol Evol 27:311–324 [View Article][PubMed]
    [Google Scholar]
  30. Humphreys M., Ralphs J. R., Durrant L., Lloyd D. ( 1998). Confocal laser scanning microscopy of Trichomonads. Hydrogenosomes store calcium and show a membrane potential. Eur J Protistol 34:356–362 [CrossRef]
    [Google Scholar]
  31. Keeling P. J., Burger G., Durnford D. G., Lang B. F., Lee R. W., Pearlman R. E., Roger A. J., Gray M. W. ( 2005). The tree of eukaryotes. Trends Ecol Evol 20:670–676 [View Article][PubMed]
    [Google Scholar]
  32. Laemmli U. K. ( 1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [View Article][PubMed]
    [Google Scholar]
  33. Lill R., Mühlenhoff U. ( 2008). Maturation of iron-sulfur proteins in eukaryotes: mechanisms, connected processes, and diseases. Annu Rev Biochem 77:669–700 [View Article][PubMed]
    [Google Scholar]
  34. Lindmark D. G. ( 1980). Energy metabolism of the anaerobic protozoon Giardia lamblia. . Mol Biochem Parasitol 1:1–12 [View Article][PubMed]
    [Google Scholar]
  35. Lloyd D., Ralphs J. R., Harris J. C. ( 2002a). Giardia intestinalis, a eukaryote without hydrogenosomes, produces hydrogen. Microbiology 148:727–733[PubMed]
    [Google Scholar]
  36. Lloyd D., Harris J. C., Maroulis S., Wadley R., Ralphs J. R., Hann A. C., Turner M. P., Edwards M. R. ( 2002b). The “primitive” microaerophile Giardia intestinalis (syn. lamblia, duodenalis) has specialized membranes with electron transport and membrane-potential-generating functions. Microbiology 148:1349–1354[PubMed]
    [Google Scholar]
  37. Maralikova B., Ali V., Nakada-Tsukui K., Nozaki T., van der Giezen M., Henze K., Tovar J. ( 2010). Bacterial-type oxygen detoxification and iron-sulfur cluster assembly in amoebal relict mitochondria. Cell Microbiol 12:331–342 [View Article][PubMed]
    [Google Scholar]
  38. Martin W., Müller M. ( 1998). The hydrogen hypothesis for the first eukaryote. Nature 392:37–41 [View Article][PubMed]
    [Google Scholar]
  39. Mokranjac D., Neupert W. ( 2008). Energetics of protein translocation into mitochondria. Biochim Biophys Acta 1777:758–762 [View Article][PubMed]
    [Google Scholar]
  40. Morrison H. G., McArthur A. G., Gillin F. D., Aley S. B., Adam R. D., Olsen G. J., Best A. A., Cande W. Z., Chen F. et al. ( 2007). Genomic minimalism in the early diverging intestinal parasite Giardia lamblia. . Science 317:1921–1926 [View Article][PubMed]
    [Google Scholar]
  41. Müller M. ( 1993). The hydrogenosome. J Gen Microbiol 139:2879–2889[PubMed] [CrossRef]
    [Google Scholar]
  42. Müller M. ( 2003). Energy metabolism. Part I: anaerobic protozoa. Molecular Medical Parasitology125–139 Marr J., Nilsen T., Komunieki R. London: Academic Press; [View Article]
    [Google Scholar]
  43. Pendergrass W., Wolf N., Poot M. ( 2004). Efficacy of MitoTracker Green and CMXrosamine to measure changes in mitochondrial membrane potentials in living cells and tissues. Cytometry A 61:162–169 [View Article][PubMed]
    [Google Scholar]
  44. Pütz S., Dolezal P., Gelius-Dietrich G., Bohacova L., Tachezy J., Henze K. ( 2006). Fe-hydrogenase maturases in the hydrogenosomes of Trichomonas vaginalis. . Eukaryot Cell 5:579–586 [View Article][PubMed]
    [Google Scholar]
  45. Regoes A., Zourmpanou D., León-Avila G., van der Giezen M., Tovar J., Hehl A. B. ( 2005). Protein import, replication, and inheritance of a vestigial mitochondrion. J Biol Chem 280:30557–30563 [View Article][PubMed]
    [Google Scholar]
  46. Sánchez L. B., Galperin M. Y., Müller M. ( 2000). Acetyl-CoA synthetase from the amitochondriate eukaryote Giardia lamblia belongs to the newly recognized superfamily of acyl-CoA synthetases (Nucleoside diphosphate-forming). J Biol Chem 275:5794–5803 [View Article][PubMed]
    [Google Scholar]
  47. Saraste M. ( 1999). Oxidative phosphorylation at the fin de siècle. Science 283:1488–1493 [View Article][PubMed]
    [Google Scholar]
  48. Smíd O., Matusková A., Harris S. R., Kucera T., Novotný M., Horváthová L., Hrdý I., Kutejová E., Hirt R. P. et al. ( 2008). Reductive evolution of the mitochondrial processing peptidases of the unicellular parasites Trichomonas vaginalis and Giardia intestinalis. . PLoS Pathog 4:e1000243 [View Article][PubMed]
    [Google Scholar]
  49. Stefanic S., Palm D., Svärd S. G., Hehl A. B. ( 2006). Organelle proteomics reveals cargo maturation mechanisms associated with Golgi-like encystation vesicles in the early-diverged protozoan Giardia lamblia. . J Biol Chem 281:7595–7604 [View Article][PubMed]
    [Google Scholar]
  50. Sutak R., Dolezal P., Fiumera H. L., Hrdy I., Dancis A., Delgadillo-Correa M., Johnson P. J., Müller M., Tachezy J. ( 2004). Mitochondrial-type assembly of FeS centers in the hydrogenosomes of the amitochondriate eukaryote Trichomonas vaginalis. . Proc Natl Acad Sci U S A 101:10368–10373 [View Article][PubMed]
    [Google Scholar]
  51. Tachezy J., Sánchez L. B., Müller M. ( 2001). Mitochondrial type iron-sulfur cluster assembly in the amitochondriate eukaryotes Trichomonas vaginalis and Giardia intestinalis, as indicated by the phylogeny of IscS. Mol Biol Evol 18:1919–1928[PubMed] [CrossRef]
    [Google Scholar]
  52. Takaya N., Suzuki S., Kuwazaki S., Shoun H., Maruo F., Yamaguchi M., Takeo K. ( 1999). Cytochrome p450nor, a novel class of mitochondrial cytochrome P450 involved in nitrate respiration in the fungus Fusarium oxysporum. . Arch Biochem Biophys 372:340–346 [View Article][PubMed]
    [Google Scholar]
  53. Tielens A. G., Van Hellemond J. J. ( 1998). The electron transport chain in anaerobically functioning eukaryotes. Biochim Biophys Acta 1365:71–78 [View Article][PubMed]
    [Google Scholar]
  54. Tovar J., León-Avila G., Sánchez L. B., Sutak R., Tachezy J., van der Giezen M., Hernández M., Müller M., Lucocq J. M. ( 2003). Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature 426:172–176 [View Article][PubMed]
    [Google Scholar]
  55. Townson S. M., Upcroft J. A., Upcroft P. ( 1996). Characterisation and purification of pyruvate : ferredoxin oxidoreductase from Giardia duodenalis. . Mol Biochem Parasitol 79:183–193 [View Article][PubMed]
    [Google Scholar]
  56. van Grinsven K. W., Rosnowsky S., van Weelden S. W., Pütz S., van der Giezen M., Martin W., van Hellemond J. J., Tielens A. G., Henze K. ( 2008). Acetate : succinate CoA-transferase in the hydrogenosomes of Trichomonas vaginalis: identification and characterization. J Biol Chem 283:1411–1418 [View Article][PubMed]
    [Google Scholar]
  57. Van Hellemond J. J., Opperdoes F. R., Tielens A. G. ( 1998). Trypanosomatidae produce acetate via a mitochondrial acetate : succinate CoA transferase. Proc Natl Acad Sci U S A 95:3036–3041 [View Article][PubMed]
    [Google Scholar]
  58. Williams K. P., Sobral B. W., Dickerman A. W. ( 2007). A robust species tree for the alphaproteobacteria. J Bacteriol 189:4578–4586 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.044784-0
Loading
/content/journal/micro/10.1099/mic.0.044784-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error