1887

Abstract

Redox pathways play a key role in pathogenesis. Glutathione, a central molecule in redox homeostasis in yeasts, is an essential metabolite, but its requirements can be met either from endogenous biosynthesis or from the extracellular milieu. In this report we have examined the importance of glutathione biosynthesis in two major human opportunistic fungal pathogens, and . As the genome sequence of had suggested the absence of glutathione transporters, we initially investigated exogenous glutathione utilization in by disruption of the gene, involved in methionine biosynthesis. We observed an organic sulphur auxotrophy in a Δ strain; however, unlike its counterpart, the Δ strain was unable to grow on exogenous glutathione. This inability to grow on exogenous glutathione was demonstrated to be due to the lack of a functional glutathione transporter, despite the presence of a functional glutathione degradation machinery (the Dug pathway). In the absence of the ability to obtain glutathione from the extracellular medium, we examined and could demonstrate that -glutamyl cysteine synthase, the first enzyme of glutathione biosynthesis, was essential in . Further, although -glutamyl cysteine synthase has been reported to be non-essential in , we report here for what is believed to be the first time that the enzyme is required for survival in human macrophages , as well as for virulence in a murine model of disseminated candidiasis. The essentiality of -glutamyl cysteine synthase in , and its essentiality for virulence in , make the enzyme a strong candidate for antifungal development.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.045054-0
2011-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/2/484.html?itemId=/content/journal/micro/10.1099/mic.0.045054-0&mimeType=html&fmt=ahah

References

  1. Baek Y. U., Kim Y. R., Yim H. S., Kang S. O. 2004; Disruption of gamma-glutamylcysteine synthetase results in absolute glutathione auxotrophy and apoptosis in Candida albicans . FEBS Lett 556:47–52
    [Google Scholar]
  2. Biterova E. I., Barycki J. J. 2009; Mechanistic details of glutathione biosynthesis revealed by crystal structures of Saccharomyces cerevisiae glutamate cysteine ligase. J Biol Chem 284:32700–32708
    [Google Scholar]
  3. Bourbouloux A., Shahi P., Chakladar A., Delrot S., Bachhawat A. K. 2000; Hgt1p, a high affinity glutathione transporter from the yeast Saccharomyces cerevisiae . J Biol Chem 275:13259–13265
    [Google Scholar]
  4. Castro A., Lemos C., Falcao A., Fernandes A. S., Glass N. L., Videira A. 2010; Rotenone enhances the antifungal properties of staurosporine. Eukaryot Cell 9:906–914
    [Google Scholar]
  5. Chen Y. L., Kauffman S., Reynolds T. B. 2008; Candida albicans uses multiple mechanisms to acquire the essential metabolite inositol during infection. Infect Immun 76:2793–2801
    [Google Scholar]
  6. Chibana H., Uno J., Cho T., Mikami Y. 2005; Mutation in IRO1 tightly linked with URA3 gene reduces virulence of Candida albicans . Microbiol Immunol 49:937–939
    [Google Scholar]
  7. De Hertogh B., Hancy F., Goffeau A., Baret P. V. 2006; Emergence of species-specific transporters during evolution of the hemiascomycete phylum. Genetics 172:771–781
    [Google Scholar]
  8. Domergue R., Castano I., De Las Penas A., Zupancic M., Lockatell V., Hebel J. R., Johnson D., Cormack B. P. 2005; Nicotinic acid limitation regulates silencing of Candida adhesins during UTI. Science 308:866–870
    [Google Scholar]
  9. Dujon B., Sherman D., Fischer G., Durrens P., Casaregola S., Lafontaine I., De Montigny J., Marck C., Neuvéglise C. other authors 2004; Genome evolution in yeasts. Nature 430:35–44
    [Google Scholar]
  10. Earley M. C., Crouse G. F. 1996; Selectable cassettes for simplified construction of yeast gene disruption vectors. Gene 169:111–113
    [Google Scholar]
  11. Ernst J. F., Tielker D. 2009; Responses to hypoxia in fungal pathogens. Cell Microbiol 11:183–190
    [Google Scholar]
  12. Fahey R. C., Sundquist A. R. 1991; Evolution of glutathione metabolism. Adv Enzymol Relat Areas Mol Biol 64:1–53
    [Google Scholar]
  13. Fidel P. L. Jr, Vazquez J. A., Sobel J. D. 1999; Candida glabrata : review of epidemiology, pathogenesis, and clinical disease with comparison to C. albicans . Clin Microbiol Rev 12:80–96
    [Google Scholar]
  14. Ganguli D., Kumar C., Bachhawat A. K. 2007; The alternative pathway of glutathione degradation is mediated by a novel protein complex involving three new genes in Saccharomyces cerevisiae . Genetics 175:1137–1151
    [Google Scholar]
  15. Gietz D., St Jean A., Woods R. A., Schiestl R. H. 1992; Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 20:1425
    [Google Scholar]
  16. Guttormsen A. B., Solheim E., Refsum H. 2004; Variation in plasma cystathionine and its relation to changes in plasma concentrations of homocysteine and methionine in healthy subjects during a 24-h observation period. Am J Clin Nutr 79:76–79
    [Google Scholar]
  17. Huynh T. T., Huynh V. T., Harmon M. A., Phillips M. A. 2003; Gene knockdown of γ -glutamylcysteine synthetase by RNAi in the parasitic protozoa Trypanosoma brucei demonstrates that it is an essential enzyme. J Biol Chem 278:39794–39800
    [Google Scholar]
  18. Kaur R., Domergue R., Zupancic M. L., Cormack B. P. 2005; A yeast by any other name: Candida glabrata and its interaction with the host. Curr Opin Microbiol 8:378–384
    [Google Scholar]
  19. Kaur J., Srikanth C. V., Bachhawat A. K. 2009; Differential roles played by the native cysteine residues of the yeast glutathione transporter, Hgt1p. FEMS Yeast Res 9:849–866
    [Google Scholar]
  20. Lay J., Henry L. K., Clifford J., Koltin Y., Bulawa C. E., Becker J. M. 1998; Altered expression of selectable marker URA3 in gene-disrupted Candida albicans strains complicates interpretation of virulence studies. Infect Immun 66:5301–5306
    [Google Scholar]
  21. Lemar K. M., Aon M. A., Cortassa S., O'Rourke B., Muller C. T., Lloyd D. 2007; Diallyl disulphide depletes glutathione in Candida albicans : oxidative stress-mediated cell death studied by two-photon microscopy. Yeast 24:695–706
    [Google Scholar]
  22. Meister A., Anderson M. E. 1983; Glutathione. Annu Rev Biochem 52:711–760
    [Google Scholar]
  23. Mukherjee A., Roy G., Guimond C., Ouellette M. 2009; The γ -glutamylcysteine synthetase gene of Leishmania is essential and involved in response to oxidants. Mol Microbiol 74:914–927
    [Google Scholar]
  24. Mumberg D., Muller R., Funk M. 1995; Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156:119–122
    [Google Scholar]
  25. Murata K., Kimura A. 1982; Some properties of glutathione biosynthesis-deficient mutants of Escherichia coli B. J Gen Microbiol 128:1047–1052
    [Google Scholar]
  26. Penninckx M. J. 2002; An overview on glutathione in Saccharomyces versus non-conventional yeasts. FEMS Yeast Res 2:295–305
    [Google Scholar]
  27. Pfaller M. A., Diekema D. J., Gibbs D. L., Newell V. A., Ellis D., Tullio V., Rodloff A., Fu W., Ling T. A. Global Antifungal Surveillance Group 2010; Results from the ARTEMIS DISK Global Antifungal Surveillance Study, 1997 to 2007: a 10.5-year analysis of susceptibilities of Candida species to fluconazole and voriconazole as determined by CLSI standardized disk diffusion. J Clin Microbiol 48:1366–1377
    [Google Scholar]
  28. Reuss O., Morschhäuser J. 2006; A family of oligopeptide transporters is required for growth of Candida albicans on proteins. Mol Microbiol 60:795–812
    [Google Scholar]
  29. Reuss O., Vik A., Kolter R., Morschhäuser J. 2004; The SAT1 flipper, an optimized tool for gene disruption in Candida albicans . Gene 341:119–127
    [Google Scholar]
  30. Rocha C. R., Schroppel K., Harcus D., Marcil A., Dignard D., Taylor B. N., Thomas D. Y., Whiteway M., Leberer E. 2001; Signaling through adenylyl cyclase is essential for hyphal growth and virulence in the pathogenic fungus Candida albicans . Mol Biol Cell 12:3631–3643
    [Google Scholar]
  31. Sharma K. G., Sharma V., Bourbouloux A., Delrot S., Bachhawat A. K. 2000; Glutathione depletion leads to delayed growth stasis in Saccharomyces cerevisiae : evidence of a partially overlapping role for thioredoxin. Curr Genet 38:71–77
    [Google Scholar]
  32. Sipos K., Lange H., Fekete Z., Ullmann P., Lill R., Kispal G. 2002; Maturation of cytosolic iron-sulfur proteins requires glutathione. J Biol Chem 277:26944–26949
    [Google Scholar]
  33. Thakur A., Bachhawat A. K. 2010; The role of transmembrane helix 9 in substrate recognition by the fungal high affinity glutathione transporters. Biochem J 429:593–602
    [Google Scholar]
  34. Thakur A., Kaur J., Bachhawat A. K. 2008; Pgt1, a glutathione transporter from the fission yeast Schizosaccharomyces pombe . FEMS Yeast Res 8:916–929
    [Google Scholar]
  35. Vega-Rodríguez J., Franke-Fayard B., Dinglasan R. R., Janse C. J., Pastrana-Mena R., Waters A. P., Coppens I., Rodríguez-Orengo J. F., Srinivasan P. other authors 2009; The glutathione biosynthetic pathway of Plasmodium is essential for mosquito transmission. PLoS Pathog 5:e1000302
    [Google Scholar]
  36. Viaene J., Tiels P., Logghe M., Dewaele S., Martinet W., Contreras R. 2000; MET15 as a visual selection marker for Candida albicans . Yeast 16:1205–1215
    [Google Scholar]
  37. Wingard J. R. 1995; Importance of Candida species other than C. albicans as pathogens in oncology patients. Clin Infect Dis 20:115–125
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.045054-0
Loading
/content/journal/micro/10.1099/mic.0.045054-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error