1887

Abstract

The streptococcal rotein required for ell eparation (PcsB) is predicted to play an important role in peptidoglycan metabolism, based on sequence motifs and altered phenotypes of gene deletion mutant cells exhibiting defects in cell separation. However, no enzymic activity has been demonstrated for PcsB so far. By generating gene deletion mutant strains in four different genetic backgrounds we could demonstrate that is not essential for cell survival in , but is essential for proper cell division. Deletion mutant cells displayed cluster formation due to aberrant cell division, reduced growth and antibiotic sensitivity that were fully reverted by transformation with a plasmid carrying . Immunofluorescence staining revealed that PcsB was localized to the cell poles, similarly to PBP3 and LytB, enzymes with demonstrated peptidoglycan-degrading activity required for daughter cell separation. Similarly to other studies with PcsB homologues, we could not detect peptidoglycan-lytic activity with recombinant or native pneumococcal PcsB . In addition to defects in septum placement and separation, the absence of PcsB induced an increased release of several proteins, such as enolase, MalX and the SP0107 LysM domain protein. Interestingly, genes encoding both LysM domain-containing proteins that are present in the pneumococcal genome (SP0107 and SP2063) and predicted to be involved in cell wall metabolism were found to be highly overexpressed (14–33-fold increase) in Δ cells in two different genetic backgrounds. Otherwise, we detected very few changes in the global gene expression profile of cells lacking PcsB. Thus our data suggest that LysM domain proteins partially compensate for the lack of PcsB function and allow the survival and slow growth of the pneumococcus.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.045211-0
2011-07-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/7/1897.html?itemId=/content/journal/micro/10.1099/mic.0.045211-0&mimeType=html&fmt=ahah

References

  1. Barendt S. M., Land A. D., Sham L. T., Ng W. L., Tsui H. C., Arnold R. J., Winkler M. E. ( 2009). Influences of capsule on cell shape and chain formation of wild-type and pcsB mutants of serotype 2 Streptococcus pneumoniae . J Bacteriol 191:3024–3040 [View Article][PubMed]
    [Google Scholar]
  2. Bateman A., Rawlings N. D. ( 2003). The CHAP domain: a large family of amidases including GSP amidase and peptidoglycan hydrolases. Trends Biochem Sci 28:234–237 [View Article][PubMed]
    [Google Scholar]
  3. Bergmann S., Rohde M., Preissner K. T., Hammerschmidt S. ( 2005). The nine residue plasminogen-binding motif of the pneumococcal enolase is the major cofactor of plasmin-mediated degradation of extracellular matrix, dissolution of fibrin and transmigration. Thromb Haemost 94:304–311[PubMed]
    [Google Scholar]
  4. Biswas S., Biswas I. ( 2005). Role of HtrA in surface protein expression and biofilm formation by Streptococcus mutans . Infect Immun 73:6923–6934 [View Article][PubMed]
    [Google Scholar]
  5. Chan P. F., O'Dwyer K. M., Palmer L. M., Ambrad J. D., Ingraham K. A., So C., Lonetto M. A., Biswas S., Rosenberg M. et al. ( 2003). Characterization of a novel fucose-regulated promoter (P fcsK ) suitable for gene essentiality and antibacterial mode-of-action studies in Streptococcus pneumoniae . J Bacteriol 185:2051–2058 [View Article][PubMed]
    [Google Scholar]
  6. Chia J. S., Chang L. Y., Shun C. T., Chang Y. Y., Tsay Y. G., Chen J. Y. ( 2001a). A 60-kilodalton immunodominant glycoprotein is essential for cell wall integrity and the maintenance of cell shape in Streptococcus mutans . Infect Immun 69:6987–6998 [View Article][PubMed]
    [Google Scholar]
  7. Chia J. S., Lee Y. Y., Huang P. T., Chen J. Y. ( 2001b). Identification of stress-responsive genes in Streptococcus mutans by differential display reverse transcription-PCR. Infect Immun 69:2493–2501 [View Article][PubMed]
    [Google Scholar]
  8. De Las Rivas B., García J. L., López R., García P. ( 2002). Purification and polar localization of pneumococcal LytB, a putative endo-β-N-acetylglucosaminidase: the chain-dispersing murein hydrolase. J Bacteriol 184:4988–5000 [View Article][PubMed]
    [Google Scholar]
  9. Divakaruni A. V., Baida C., White C. L., Gober J. W. ( 2007). The cell shape proteins MreB and MreC control cell morphogenesis by positioning cell wall synthetic complexes. Mol Microbiol 66:174–188 [View Article][PubMed]
    [Google Scholar]
  10. Errington J., Daniel R. A., Scheffers D. J. ( 2003). Cytokinesis in bacteria. Microbiol Mol Biol Rev 67:52–65 [View Article][PubMed]
    [Google Scholar]
  11. Fadda D., Santona A., D'Ulisse V., Ghelardini P., Ennas M. G., Whalen M. B., Massidda O. ( 2007). Streptococcus pneumoniae DivIVA: localization and interactions in a MinCD-free context. J Bacteriol 189:1288–1298 [View Article][PubMed]
    [Google Scholar]
  12. Giefing C., Meinke A. L., Hanner M., Henics T., Bui M. D., Gelbmann D., Lundberg U., Senn B. M., Schunn M. et al. ( 2008). Discovery of a novel class of highly conserved vaccine antigens using genomic scale antigenic fingerprinting of pneumococcus with human antibodies. J Exp Med 205:117–131 [View Article][PubMed]
    [Google Scholar]
  13. Giefing C., Jelencsics K. E., Gelbmann D., Senn B. M., Nagy E. ( 2010). The pneumococcal eukaryotic-type serine/threonine protein kinase StkP co-localizes with the cell division apparatus and interacts with FtsZ in vitro . Microbiology 156:1697–1707 [View Article][PubMed]
    [Google Scholar]
  14. Höltje J. V. ( 1995). From growth to autolysis: the murein hydrolases in Escherichia coli . Arch Microbiol 164:243–254 [View Article][PubMed]
    [Google Scholar]
  15. Höltje J. V., Tuomanen E. I. ( 1991). The murein hydrolases of Escherichia coli: properties, functions and impact on the course of infections in vivo . J Gen Microbiol 137:441–454[PubMed] [CrossRef]
    [Google Scholar]
  16. Kolberg J., Aase A., Bergmann S., Herstad T. K., Rødal G., Frank R., Rohde M., Hammerschmidt S. ( 2006). Streptococcus pneumoniae enolase is important for plasminogen binding despite low abundance of enolase protein on the bacterial cell surface. Microbiology 152:1307–1317 [View Article][PubMed]
    [Google Scholar]
  17. Kyburz A., Raulinaitis V., Koskela O., Kontinen V., Permi P., Kilpelainen I., Seppala R. ( 2010). 1H, 13C and 15N resonance assignments of the major extracytoplasmic domain of the cell shape-determining protein MreC from Bacillus subtilis . Biomol NMR Assign 4:235–238 [View Article][PubMed]
    [Google Scholar]
  18. Lepeuple A. S., Van Gemert E., Chapot-Chartier M. P. ( 1998). Analysis of the bacteriolytic enzymes of the autolytic Lactococcus lactis subsp. cremoris strain AM2 by renaturing polyacrylamide gel electrophoresis: identification of a prophage-encoded enzyme. Appl Environ Microbiol 64:4142–4148[PubMed]
    [Google Scholar]
  19. Livak K. J., Schmittgen T. D. ( 2001). Analysis of relative gene expression data using real-time quantitative PCR and the method. Methods 25:402–408 [View Article][PubMed]
    [Google Scholar]
  20. Mattos-Graner R. O., Jin S., King W. F., Chen T., Smith D. J., Duncan M. J. ( 2001). Cloning of the Streptococcus mutans gene encoding glucan binding protein B and analysis of genetic diversity and protein production in clinical isolates. Infect Immun 69:6931–6941 [View Article][PubMed]
    [Google Scholar]
  21. Mattos-Graner R. O., Porter K. A., Smith D. J., Hosogi Y., Duncan M. J. ( 2006). Functional analysis of glucan binding protein B from Streptococcus mutans . J Bacteriol 188:3813–3825 [View Article][PubMed]
    [Google Scholar]
  22. McIver K. S., Subbarao S., Kellner E. M., Heath A. S., Scott J. R. ( 1996). Identification of isp, a locus encoding an immunogenic secreted protein conserved among group A streptococci. Infect Immun 64:2548–2555[PubMed]
    [Google Scholar]
  23. Morlot C., Noirclerc-Savoye M., Zapun A., Dideberg O., Vernet T. ( 2004). The d,d-carboxypeptidase PBP3 organizes the division process of Streptococcus pneumoniae . Mol Microbiol 51:1641–1648 [View Article][PubMed]
    [Google Scholar]
  24. Ng W. L., Robertson G. T., Kazmierczak K. M., Zhao J., Gilmour R., Winkler M. E. ( 2003). Constitutive expression of PcsB suppresses the requirement for the essential VicR (YycF) response regulator in Streptococcus pneumoniae R6. Mol Microbiol 50:1647–1663 [View Article][PubMed]
    [Google Scholar]
  25. Ng W. L., Kazmierczak K. M., Winkler M. E. ( 2004). Defective cell wall synthesis in Streptococcus pneumoniae R6 depleted for the essential PcsB putative murein hydrolase or the VicR (YycF) response regulator. Mol Microbiol 53:1161–1175 [View Article][PubMed]
    [Google Scholar]
  26. Ng W. L., Tsui H. C., Winkler M. E. ( 2005). Regulation of the pspA virulence factor and essential pcsB murein biosynthetic genes by the phosphorylated VicR (YycF) response regulator in Streptococcus pneumoniae . J Bacteriol 187:7444–7459 [View Article][PubMed]
    [Google Scholar]
  27. Osborn M. J., Rothfield L. ( 2007). Cell shape determination in Escherichia coli . Curr Opin Microbiol 10:606–610 [View Article][PubMed]
    [Google Scholar]
  28. Reinscheid D. J., Gottschalk B., Schubert A., Eikmanns B. J., Chhatwal G. S. ( 2001). Identification and molecular analysis of PcsB, a protein required for cell wall separation of group B streptococcus. J Bacteriol 183:1175–1183 [View Article][PubMed]
    [Google Scholar]
  29. Reinscheid D. J., Ehlert K., Chhatwal G. S., Eikmanns B. J. ( 2003). Functional analysis of a PcsB-deficient mutant of group B streptococcus. FEMS Microbiol Lett 221:73–79 [View Article][PubMed]
    [Google Scholar]
  30. Rigden D. J., Jedrzejas M. J., Galperin M. Y. ( 2003). Amidase domains from bacterial and phage autolysins define a family of γ-d,l-glutamate-specific amidohydrolases. Trends Biochem Sci 28:230–234 [View Article][PubMed]
    [Google Scholar]
  31. Schubert K., Bichlmaier A. M., Mager E., Wolff K., Ruhland G., Fiedler F. ( 2003). P45, an extracellular 45 kDa protein of Listeria monocytogenes with similarity to protein p60 and exhibiting peptidoglycan lytic activity. Arch Microbiol 173:21–28 [View Article][PubMed]
    [Google Scholar]
  32. Schuster C., Dobrinski B., Hakenbeck R. ( 1990). Unusual septum formation in Streptococcus pneumoniae mutants with an alteration in the d,d-carboxypeptidase penicillin-binding protein 3. J Bacteriol 172:6499–6505[PubMed]
    [Google Scholar]
  33. Severin A., Schuster C., Hakenbeck R., Tomasz A. ( 1992). Altered murein composition in a dd-carboxypeptidase mutant of Streptococcus pneumoniae . J Bacteriol 174:5152–5155[PubMed]
    [Google Scholar]
  34. Smith D. J., Akita H., King W. F., Taubman M. A. ( 1994). Purification and antigenicity of a novel glucan-binding protein of Streptococcus mutans . Infect Immun 62:2545–2552[PubMed]
    [Google Scholar]
  35. Smith D. J., King W. F., Godiska R. ( 2001). Passive transfer of immunoglobulin Y antibody to Streptococcus mutans glucan binding protein B can confer protection against experimental dental caries. Infect Immun 69:3135–3142 [View Article][PubMed]
    [Google Scholar]
  36. Stewart G. C. ( 2005). Taking shape: control of bacterial cell wall biosynthesis. Mol Microbiol 57:1177–1181 [View Article][PubMed]
    [Google Scholar]
  37. Teng F., Kawalec M., Weinstock G. M., Hryniewicz W., Murray B. E. ( 2003). An Enterococcus faecium secreted antigen, SagA, exhibits broad-spectrum binding to extracellular matrix proteins and appears essential for E. faecium growth. Infect Immun 71:5033–5041 [View Article][PubMed]
    [Google Scholar]
  38. van Ginkel F. W., McGhee J. R., Watt J. M., Campos-Torres A., Parish L. A., Briles D. E. ( 2003). Pneumococcal carriage results in ganglioside-mediated olfactory tissue infection. Proc Natl Acad Sci U S A 100:14363–14367 [View Article][PubMed]
    [Google Scholar]
  39. Vollmer W., Joris B., Charlier P., Foster S. ( 2008). Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol Rev 32:259–286 [View Article][PubMed]
    [Google Scholar]
  40. Wuenscher M. D., Köhler S., Bubert A., Gerike U., Goebel W. ( 1993). The iap gene of Listeria monocytogenes is essential for cell viability, and its gene product, p60, has bacteriolytic activity. J Bacteriol 175:3491–3501[PubMed]
    [Google Scholar]
  41. Zapun A., Vernet T., Pinho M. G. ( 2008). The different shapes of cocci. FEMS Microbiol Rev 32:345–360 [View Article][PubMed]
    [Google Scholar]
  42. Zhou R., Chen S., Recsei P. ( 1988). A dye release assay for determination of lysostaphin activity. Anal Biochem 171:141–144 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.045211-0
Loading
/content/journal/micro/10.1099/mic.0.045211-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error