1887

Abstract

is a major cause of nosocomial diarrhoea. The toxins that it produces (TcdA and TcdB) are responsible for the characteristic pathology of infection (CDI), while its spores persist in the environment, causing its widespread transmission. Many different strains of exist worldwide and the epidemiology of the strains is ever-changing: in Scotland, PCR ribotype 012 was once prevalent, but currently ribotypes 106, 001 and 027 are endemic. This study aimed to identify the differences among these ribotypes with respect to their growth, and toxin and spore production . It was observed that the hypervirulent ribotype 027 produces significantly more toxin than the other ribotypes in the exponential and stationary phases of growth. Further, the endemic strains produce significantly more toxins and spores than ribotype 012. Of note was the observation that expression did not decrease into the stationary phase of growth, implying that it may have a modulatory rather than repressive effect on toxin production. Further, the increased expression of in ribotype 027 suggests its importance in the release of the toxins. It can thus be concluded that several genotypic and phenotypic traits might synergistically contribute to the hypervirulence of ribotype 027. These observations might suggest a changing trend towards increased virulence in the strains currently responsible for CDI.

Funding
This study was supported by the:
  • Overseas Research Students Awards Scheme
  • University of Edinburgh Centre for Infectious Diseases
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.046243-0
2011-05-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/5/1343.html?itemId=/content/journal/micro/10.1099/mic.0.046243-0&mimeType=html&fmt=ahah

References

  1. Akerlund T., Svenungsson B., Lagergren A., Burman L. G. ( 2006). Correlation of disease severity with fecal toxin levels in patients with Clostridium difficile-associated diarrhea and distribution of PCR ribotypes and toxin yields in vitro of corresponding isolates. J Clin Microbiol 44:353–358 [View Article][PubMed]
    [Google Scholar]
  2. Akerlund T., Persson I., Unemo M., Norén T., Svenungsson B., Wullt M., Burman L. G. ( 2008). Increased sporulation rate of epidemic Clostridium difficile type 027/NAP1. J Clin Microbiol 46:1530–1533 [View Article][PubMed]
    [Google Scholar]
  3. Aktories K., Schmidt G., Just I. ( 2000). Rho GTPases as targets of bacterial protein toxins. Biol Chem 381:421–426 [View Article][PubMed]
    [Google Scholar]
  4. Arvand M., Hauri A. M., Zaiss N. H., Witte W., Bettge-Weller G. ( 2009). Clostridium difficile ribotypes 001, 017, and 027 are associated with lethal C. difficile infection in Hesse, Germany. Euro Surveill 14:1–4[PubMed]
    [Google Scholar]
  5. Bartlett J. G., Moon N., Chang T. W., Taylor N., Onderdonk A. B. ( 1978). Role of Clostridium difficile in antibiotic-associated pseudomembranous colitis. Gastroenterology 75:778–782[PubMed]
    [Google Scholar]
  6. Brown R., Collee J., Poxton I. ( 1996). Bacteroides, Fusobacterium and other Gram-negative anaerobic rods; anaerobic cocci; identification of anaerobes. In Mackie and McCartney Practical Medical MicrobiologyEdited by Collee J., Fraser A., Marmion B., Simmons A. London: Churchill Livingstone;
    [Google Scholar]
  7. Curry S. R., Marsh J. W., Muto C. A., O’Leary M. M., Pasculle A. W., Harrison L. H. ( 2007). tcdC genotypes associated with severe TcdC truncation in an epidemic clone and other strains of Clostridium difficile . J Clin Microbiol 45:215–221 [View Article][PubMed]
    [Google Scholar]
  8. Dineen S. S., Villapakkam A. C., Nordman J. T., Sonenshein A. L. ( 2007). Repression of Clostridium difficile toxin gene expression by CodY. Mol Microbiol 66:206–219 [View Article][PubMed]
    [Google Scholar]
  9. Drudy D., Harnedy N., Fanning S., Hannan M., Kyne L. ( 2007). Emergence and control of fluoroquinolone-resistant, toxin A-negative, toxin B-positive Clostridium difficile . Infect Control Hosp Epidemiol 28:932–940 [View Article][PubMed]
    [Google Scholar]
  10. Dupuy B., Sonenshein A. L. ( 1998). Regulated transcription of Clostridium difficile toxin genes. Mol Microbiol 27:107–120 [View Article][PubMed]
    [Google Scholar]
  11. Dupuy B., Govind R., Antunes A., Matamouros S. ( 2008). Clostridium difficile toxin synthesis is negatively regulated by TcdC. J Med Microbiol 57:685–689 [View Article][PubMed]
    [Google Scholar]
  12. Freeman J., Baines S. D., Saxton K., Wilcox M. H. ( 2007). Effect of metronidazole on growth and toxin production by epidemic Clostridium difficile PCR ribotypes 001 and 027 in a human gut model. J Antimicrob Chemother 60:83–91 [View Article][PubMed]
    [Google Scholar]
  13. George R. H., Symonds J. M., Dimock F., Brown J. D., Arabi Y., Shinagawa N., Keighley M. R., Alexander-Williams J., Burdon D. W. ( 1978). Identification of Clostridium difficile as a cause of pseudomembranous colitis. BMJ 1:695 [View Article][PubMed]
    [Google Scholar]
  14. Govind R., Vediyappan G., Rolfe R. D., Fralick J. A. ( 2006). Evidence that Clostridium difficile TcdC is a membrane-associated protein. J Bacteriol 188:3716–3720 [View Article][PubMed]
    [Google Scholar]
  15. Health Protection Scotland ( 2008). Annual report on the surveillance of Clostridium difficile associated disease (CDAD) in Scotland, October 2006–September 2007. HPS Weekly Report 42:3–9 http://www.documents.hps.scot.nhs.uk/hai/sshaip/publications/cdad/2007-12-20-ar-cdad.pdf
    [Google Scholar]
  16. Health Protection Scotland ( 2010). Quarterly report on the surveillance of Clostridium difficile infection (CDI) in Scotland, January 2010–March 2010. HPS Weekly Report 27:261–269 http://www.documents.hps.scot.nhs.uk/ewr/pdf2010/1027.pdf
    [Google Scholar]
  17. Hundsberger T., Braun V., Weidmann M., Leukel P., Sauerborn M., von Eichel-Streiber C. ( 1997). Transcription analysis of the genes tcdA-E of the pathogenicity locus of Clostridium difficile . Eur J Biochem 244:735–742 [View Article][PubMed]
    [Google Scholar]
  18. Jump R. L. P., Pultz M. J., Donskey C. J. ( 2007). Vegetative Clostridium difficile survives in room air, on moist surfaces and in gastric contents with reduced acidity: a potential mechanism to explain the association between proton pump inhibitors and C. difficile-associated diarrhea?. Antimicrob Agents Chemother 51:2883–2887 [View Article][PubMed]
    [Google Scholar]
  19. Kamiya S., Ogura H., Meng X. Q., Nakamura S. ( 1992). Correlation between cytotoxin production and sporulation in Clostridium difficile . J Med Microbiol 37:206–210 [View Article][PubMed]
    [Google Scholar]
  20. Karlsson S., Burman L. G., Akerlund T. ( 1999). Suppression of toxin production in Clostridium difficile VPI 10463 by amino acids. Microbiology 145:1683–1693 [View Article][PubMed]
    [Google Scholar]
  21. Karlsson S., Burman L. G., Akerlund T. ( 2008). Induction of toxins in Clostridium difficile is associated with dramatic changes of its metabolism. Microbiology 154:3430–3436 [View Article][PubMed]
    [Google Scholar]
  22. Krivan H. C., Clark G. F., Smith D. F., Wilkins T. D. ( 1986). Cell surface binding site for Clostridium difficile enterotoxin: evidence for a glycoconjugate containing the sequence Gal alpha 1-3Gal beta 1-4GlcNAc. Infect Immun 53:573–581[PubMed]
    [Google Scholar]
  23. Kuehne S. A., Cartman S. T., Heap J. T., Kelly M. L., Cockayne A., Minton N. P. ( 2010). The role of toxin A and toxin B in Clostridium difficile infection. Nature 467:711–713 [View Article][PubMed]
    [Google Scholar]
  24. Kuijper E. J., Coignard B., Brazier J. S., Suetens C., Drudy D., Wiuff C., Pituch H., Reichert P., Schneider F. et al. ( 2007). Update of Clostridium difficile-associated disease due to PCR ribotype 027 in Europe. Euro Surveill 12:E1–E2[PubMed]
    [Google Scholar]
  25. Larson H. E., Price A. B., Honour P., Borriello S. P. ( 1978). Clostridium difficile and the aetiology of pseudomembranous colitis. Lancet 311:1063–1066 [View Article][PubMed]
    [Google Scholar]
  26. Loo V. G., Poirier L., Miller M. A., Oughton M., Libman M. D., Michaud S., Bourgault A. M., Nguyen T., Frenette C. et al. ( 2005). A predominantly clonal multi-institutional outbreak of Clostridium difficile-associated diarrhea with high morbidity and mortality. N Engl J Med 353:2442–2449 [View Article][PubMed]
    [Google Scholar]
  27. Lyerly D. M., Saum K. E., MacDonald D. K., Wilkins T. D. ( 1985). Effects of Clostridium difficile toxins given intragastrically to animals. Infect Immun 47:349–352[PubMed]
    [Google Scholar]
  28. Lyras D., O’Connor J. R., Howarth P. M., Sambol S. P., Carter G. P., Phumoonna T., Poon R., Adams V., Vedantam G. et al. ( 2009). Toxin B is essential for virulence of Clostridium difficile . Nature 458:1176–1179 [View Article][PubMed]
    [Google Scholar]
  29. MacCannell D. R., Louie T. J., Gregson D. B., Laverdiere M., Labbe A.-C., Laing F., Henwick S. ( 2006). Molecular analysis of Clostridium difficile PCR ribotype 027 isolates from Eastern and Western Canada. J Clin Microbiol 44:2147–2152 [View Article][PubMed]
    [Google Scholar]
  30. Matamouros S., England P., Dupuy B. ( 2007). Clostridium difficile toxin expression is inhibited by the novel regulator TcdC. Mol Microbiol 64:1274–1288 [View Article][PubMed]
    [Google Scholar]
  31. McFarland L. V., Beneda H. W., Clarridge J. E., Raugi G. J. ( 2007). Implications of the changing face of Clostridium difficile disease for health care practitioners. Am J Infect Control 35:237–253 [View Article][PubMed]
    [Google Scholar]
  32. Merrigan M., Venugopal A., Mallozzi M., Roxas B., Viswanathan V. K., Johnson S., Gerding D. N., Vedantam G. ( 2010). Human hypervirulent Clostridium difficile strains exhibit increased sporulation as well as robust toxin production. J Bacteriol 192:4904–4911 [View Article][PubMed]
    [Google Scholar]
  33. Mutlu E., Wroe A. J., Sanchez-Hurtado K., Brazier J. S., Poxton I. R. ( 2007). Molecular characterization and antimicrobial susceptibility patterns of Clostridium difficile strains isolated from hospitals in south-east Scotland. J Med Microbiol 56:921–929 [View Article][PubMed]
    [Google Scholar]
  34. Pépin J., Valiquette L., Alary M.-E., Villemure P., Pelletier A., Forget K., Pépin K., Chouinard D. ( 2004). Clostridium difficile-associated diarrhea in a region of Quebec from 1991 to 2003: a changing pattern of disease severity. CMAJ 171:466–472[PubMed] [CrossRef]
    [Google Scholar]
  35. Pépin J., Valiquette L., Cossette B. ( 2005). Mortality attributable to nosocomial Clostridium difficile-associated disease during an epidemic caused by a hypervirulent strain in Quebec. CMAJ 173:1037–1042[PubMed] [CrossRef]
    [Google Scholar]
  36. Pfaffl M. W. ( 2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45 [View Article][PubMed]
    [Google Scholar]
  37. Riggs M. M., Sethi A. K., Zabarsky T. F., Eckstein E. C., Jump R. L. P., Donskey C. J. ( 2007). Asymptomatic carriers are a potential source for transmission of epidemic and nonepidemic Clostridium difficile strains among long-term care facility residents. Clin Infect Dis 45:992–998 [View Article][PubMed]
    [Google Scholar]
  38. Rozen S., Skaletsky H. ( 2000). Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386[PubMed]
    [Google Scholar]
  39. Smith A. ( 2005). Outbreak of Clostridium difficile infection in an English hospital linked to hypertoxin-producing strains in Canada and the US. Euro Surveill 10:E050630–2 http://www.eurosurveillance.org/images/dynamic/EQ/v05n03/v05n03.pdf[PubMed]
    [Google Scholar]
  40. Spigaglia P., Mastrantonio P. ( 2002). Molecular analysis of the pathogenicity locus and polymorphism in the putative negative regulator of toxin production (TcdC) among Clostridium difficile clinical isolates. J Clin Microbiol 40:3470–3475 [View Article][PubMed]
    [Google Scholar]
  41. Sundram F., Guyot A., Carboo I., Green S., Lilaonitkul M., Scourfield A. ( 2009). Clostridium difficile ribotypes 027 and 106: clinical outcomes and risk factors. J Hosp Infect 72:111–118 [View Article][PubMed]
    [Google Scholar]
  42. Sutton P. A., Li S., Webb J., Solomon K., Brazier J., Mahida Y. R. ( 2008). Essential role of toxin A in C. difficile 027 and reference strain supernatant-mediated disruption of Caco-2 intestinal epithelial barrier function. Clin Exp Immunol 153:439–447 [View Article][PubMed]
    [Google Scholar]
  43. Tan K. S., Wee B. Y., Song K. P. ( 2001). Evidence for holin function of tcdE gene in the pathogenicity of Clostridium difficile . J Med Microbiol 50:613–619[PubMed]
    [Google Scholar]
  44. Taori S. K., Hall V., Poxton I. ( 2009). Changes in antibiotic susceptibility and ribotypes in Clostridium difficile isolates from southern Scotland, 1979–2004. J Med Microbiol 59:338–344 [View Article][PubMed]
    [Google Scholar]
  45. Tucker K. D., Wilkins T. D. ( 1991). Toxin A of Clostridium difficile binds to the human carbohydrate antigens I, X, and Y. Infect Immun 59:73–78[PubMed]
    [Google Scholar]
  46. Underwood S., Guan S., Vijayasubhash V., Baines S. D., Graham L., Lewis R. J., Wilcox M. H., Stephenson K. ( 2009). Characterization of the sporulation initiation pathway of Clostridium difficile and its role in toxin production. J Bacteriol 191:7296–7305 [View Article][PubMed]
    [Google Scholar]
  47. Vohra P., Poxton I. R. 2010; Characterisation of Clostridium difficile ribotype 027 strains in Scotland. Poster no. SP-4, presented at: Anaerobe 2010, The 10th Biennial Congress of the Anaerobe Society of the AmericasJuly 7–9Philadelphia, PA, USA
    [Google Scholar]
  48. Warny M., Pepin J., Fang A., Killgore G., Thompson A., Brazier J., Frost E., McDonald L. C. ( 2005). Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Lancet 366:1079–1084 [View Article][PubMed]
    [Google Scholar]
  49. Wilson K. H. ( 1983). Efficiency of various bile salt preparations for stimulation of Clostridium difficile spore germination. J Clin Microbiol 18:1017–1019[PubMed]
    [Google Scholar]
  50. Wüst J., Sullivan N. M., Hardegger U., Wilkins T. D. ( 1982). Investigation of an outbreak of antibiotic-associated colitis by various typing methods. J Clin Microbiol 16:1096–1101[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.046243-0
Loading
/content/journal/micro/10.1099/mic.0.046243-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error