1887

Abstract

Protein changes in , when subjected to high-pressure carbon dioxide (HPCD) at 10 MPa and 3 °C for 5–75 min, were assessed using the Bradford method, 2D electrophoresis (2-DE) and liquid chromatography-electrospray ionization-MS-MS (LC-ESI-MS-MS). The changes in DNA in under the same conditions were also investigated by using flow cytometry with propidium iodide and acridine orange, agarose gel electrophoresis (AGE) and the comet assay. The results showed that HPCD induced leakage loss of the proteins and DNA of as a function of treatment time. With regard to the protein changes, 182 proteins in the 2-DE profile were not found in the HPCD-treated . Among 20 selected protein spots exhibiting significant changes in intensity, 18 protein spots were identified as 15 known proteins and two as hypothetical proteins. These proteins were involved in cell composition, energy metabolism pathways, nucleic acid metabolism, global stress regulation and general metabolism. The DNA denaturation of induced by HPCD was demonstrated in this study for the first time to our knowledge, and the denaturation was enhanced by increasing treatment time. However, HPCD did not cause DNA degradation, as suggested by both AGE analysis and the comet assay.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.046623-0
2011-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/3/709.html?itemId=/content/journal/micro/10.1099/mic.0.046623-0&mimeType=html&fmt=ahah

References

  1. Almirón M., Link A. J., Furlong D., Kolter R. 1992; A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli . Genes Dev 6:2646–2654
    [Google Scholar]
  2. Bacolla A., Wells R. D. 2004; DNA secondary structure. In Encyclopedia of Biological Chemistry pp 782–787 Edited by Lennarz W. J., Lane M. D. Amsterdam: Elsevier;
    [Google Scholar]
  3. Ballestra P., Silva A. A. D., Cuq J. L. 1996; Inactivation of Esherichia coli by carbon dioxide under pressure. J Food Sci 61:829–831
    [Google Scholar]
  4. Bobst E. V., Bobst A. M., Perrino F. W., Meyer R. R., Rein D. C. 1985; Variability in the nucleic acid binding site size and the amount of single-stranded DNA-binding protein in Escherichia coli . FEBS 181:133–137
    [Google Scholar]
  5. Bozdech Z., Delling U., Volkman S. K., Cowman A. F., Schurr E. 1996; Cloning and sequence analysis of a novel member of the ATP-binding cassette (ABC) protein gene family from Plasmodium falciparum . Mol Biochem Parasitol 81:41–51
    [Google Scholar]
  6. Castellani A., Hollaender A., Buzzati-Traverso A. A. 1988 DNA Damage and Repair New York: Plenum Press;
    [Google Scholar]
  7. Damar S., Balaban M. O. 2006; Review of dense phase CO2 technology: microbial and enzyme inactivation, and effects on food quality. J Food Sci 71:R1–R11
    [Google Scholar]
  8. Downing W. L., Dennis P. P. 1987; Transcription products from the rplKAJL rpoBC gene cluster. J Mol Biol 194:609–620
    [Google Scholar]
  9. Downing W. L., Sullivan S. L., Gottesman M. E., Dennis P. P. 1990; Sequence and transcriptional pattern of the essential Escherichia coli secE–nusG operon. J Bacteriol 172:1621–1627
    [Google Scholar]
  10. Evenson D. P., Larson K. L., Jost L. K. 2002; Sperm chromatin structure assay: its clinical use for detecting sperm DNA fragmentation in male infertility and comparisons with other techniques. J Androl 23:25–43
    [Google Scholar]
  11. Flohé L., Günzler W. A. 1984; Assays of glutathione peroxidase. Methods Enzymol 105:114–120
    [Google Scholar]
  12. Garcia-Gonzalez L., Geeraerd A. H., Spilimbergo S., Elst K., Van Ginneken L., Debevere J., Van Impe J. F., Devlieghere F. 2007; High pressure carbon dioxide inactivation of microorganisms in foods: the past, the present and the future. Int J Food Microbiol 117:1–28
    [Google Scholar]
  13. Garcia-Gonzalez L., Geeraerd A. H., Mast J., Briers Y., Elst K., Van Ginneken L., Van Impe J. F., Devlieghere F. 2010; Membrane permeabilization and cellular death of Escherichia coli , Listeria monocytogenes and Saccharomyces cerevisiae as induced by high pressure carbon dioxide treatment. Food Microbiol 27:541–549
    [Google Scholar]
  14. Han M. J., Lee S. Y. 2006; The Escherichia coli proteome: past, present, and future prospects. Microbiol Mol Biol Rev 70:362–439
    [Google Scholar]
  15. Hong H., Patel D. R., Tamm L. K., van den Berg B. 2006; The outer membrane protein OmpW forms an eight-stranded β -barrel with a hydrophobic channel. J Biol Chem 281:7568–7577
    [Google Scholar]
  16. Jacobson R. H., Zhang X. J., DuBose R. F., Matthews B. W. 1994; Three-dimensional structure of β -galactosidase from E. coli . Nature 369:761–766
    [Google Scholar]
  17. Jeannin P., Magistrelli G., Goetsch L., Haeuw J. F., Thieblemont N., Bonnefoy J. Y., Delneste Y. 2002; Outer membrane protein A (OmpA): a new pathogen-associated molecular pattern that interacts with antigen presenting cells-impact on vaccine strategies. Vaccine 20:Suppl. 4A23–A27
    [Google Scholar]
  18. Jorge I., Navarro R. M., Lenz C., Ariza D., Porras C., Jorrín J. 2005; The Holm Oak leaf proteome: analytical and biological variability in the protein expression level assessed by 2-DE and protein identification tandem mass spectrometry de novo sequencing and sequence similarity searching. Proteomics 5:222–234
    [Google Scholar]
  19. Kim S. R., Kim H. T., Park H. J., Kim S., Choi H. J., Hwang G. S., Yi J. H., Ryu H., Kim K. H. 2009; Fatty acid profiling and proteomic analysis of Salmonella enterica serotype Typhimurium inactivated with supercritical carbon dioxide. Int J Food Microbiol 134:190–195
    [Google Scholar]
  20. Kirkpatrick C., Maurer L. M., Oyelakin N. E., Yoncheva Y. N., Maurer R., Slonczewski J. L. 2001; Acetate and formate stress: opposite responses in the proteome of Escherichia coli . J Bacteriol 183:6466–6477
    [Google Scholar]
  21. Kornberg A. 1962; On the metabolic significance of phosphorolytic and pyrophosphorolytic reactions. In Horizons in Biochemistry pp 251–264 Edited by Kasha H., Pullman P. New York: Academic Press;
    [Google Scholar]
  22. Liao H. M., Hu X. S., Liao X. J., Chen F., Wu J. H. 2007; Inactivation of Escherichia coli inoculated into cloudy apple juice exposed to dense phase carbon dioxide. Int J Food Microbiol 118:126–131
    [Google Scholar]
  23. Liao W. J., McNutt M. A., Zhu W. G. 2009; The comet assay: a sensitive method for detecting DNA damage in individual cells. Methods 48:46–53
    [Google Scholar]
  24. Liao H. M., Zhang F. S., Liao X. J., Hu X. S., Chen Y., Deng L. 2010; Analysis of Escherichia coli cell damage induced by HPCD using microscopies and fluorescent staining. Int J Food Microbiol 144:169–176
    [Google Scholar]
  25. Lubec G., Afjehi-Sadat L., Yang J. W., John J. P. P. 2005; Searching for hypothetical proteins: theory and practice based upon original data and literature. Prog Neurobiol 77:90–127
    [Google Scholar]
  26. Mangalappalli-Illathu A. K., Lawrence J. R., Swerhone G. D. W., Korber D. R. 2008; Architectural adaptation and protein expression patterns of Salmonella enterica serovar Enteritidis biofilms under laminar flow conditions. Int J Food Microbiol 123:109–120
    [Google Scholar]
  27. Matthews B. W. 2005; The structure of E. coli β -galactosidase. C R Biol 328:549–556
    [Google Scholar]
  28. Murray K., Gefter K. 1974; The primary structure of DNA. Prog Nucleic Acid Res Mol Biol 14:117–185
    [Google Scholar]
  29. Nawrot R., Kalinowski A., Gozdzicka-Jozefiak A. 2007; Proteomic analysis of Chelidonium majus milky sap using two-dimensional gel electrophoresis and tandem mass spectrometry. Phytochemistry 68:1612–1622
    [Google Scholar]
  30. Nickoloff J. A., Hoekstra M. F. 1998 DNA Damage and Repair Totowa, NJ: Humana Press;
    [Google Scholar]
  31. Olive P. L., Banáth J. P., Durand R. E. 1990; Detection of etoposide resistance by measuring DNA damage in individual Chinese hamster cells. J Natl Cancer Inst 82:779–783
    [Google Scholar]
  32. Ostling O., Johanson K. J. 1984; Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem Biophys Res Commun 123:291–298
    [Google Scholar]
  33. Slotboom D. J., Konings W. N., Lolkema J. S. 1999; Structural features of the glutamate transporter family. Microbiol Mol Biol Rev 63:293–307
    [Google Scholar]
  34. Spilimbergo S., Bertucco A., Basso G., Bertoloni G. 2005; Determination of extracellular and intracellular pH of Bacillus subtilis suspension under CO2 treatment. Biotechnol Bioeng 92:447–451
    [Google Scholar]
  35. Spilimbergo S., Mantoan D., Quaranta A., Della Mea G. 2009; Real-time monitoring of cell membrane modification during supercritical CO2 pasteurization. J Supercrit Fluids 48:93–97
    [Google Scholar]
  36. Spilimbergo S., Quaranta A., Garcia-Gonzalez L., Contrini C., Cinquemani C., Van Ginneken L. 2010; Intracellular pH measurement during high-pressure CO2 pasteurization evaluated by cell fluorescent staining. J Supercrit Fluids 53:185–191
    [Google Scholar]
  37. Steinert S. A. 1999; DNA damage as a bivalve biomarker. Biomarkers 4:492–496
    [Google Scholar]
  38. Suzuki H., Nishimura Y., Iketani H., Campisi J., Hirashima A. 1976; Novel mutation that causes a structural change in a lipoprotein in the outer membrane of Escherichia coli . J Bacteriol 127:1494–1501
    [Google Scholar]
  39. Tice R. R., Agurell E., Anderson D., Burlinson B., Hartmann A., Kobayashi H., Miyamae Y., Rojas E., Ryu J. C., Sasaki Y. F. 2000; Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206–221
    [Google Scholar]
  40. Watanabe T., Furukawa S., Kitamoto K., Takatsuki A., Hirata R., Ogihara H., Yamasaki M. 2005; Vacuolar H+-ATPase and plasma membrane H+-ATPase contribute to the tolerance against high-pressure carbon dioxide treatment in Saccharomyces cerevisiae . Int J Food Microbiol 105:131–137
    [Google Scholar]
  41. Watanabe T., Furukawa S., Kawarai T., Wachi M., Ogihara H., Yamasaki M. 2007; Cytoplasmic acidification may occur in high-pressure carbon dioxide-treated Escherichia coli K12. Biosci Biotechnol Biochem 71:2522–2526
    [Google Scholar]
  42. White A., Burns D., Christensen T. W. 2006; Effective terminal sterilization using supercritical carbon dioxide. J Biotechnol 123:504–515
    [Google Scholar]
  43. Whittier R. F., Chase J. W. 1983; DNA repair properties of Escherichia coli tif-1. reco281 and lexA1 strains deficient in single-strand DNA binding protein. Mol Gen Genet 190:101–111
    [Google Scholar]
  44. Xu D. 2007; The effect of ultra high pressure processing on the germ plasm of the Escherichia coli DH5α . MSc thesis HeFei University of Technology; China:
  45. Zhao G., Ceci P., Ilari A., Giangiacomo L., Laue T. M., Chiancone E., Chasteen N. D. 2002; Iron and hydrogen peroxide detoxification properties of DNA-binding protein from starved cells. A ferritin-like DNA-binding protein of Escherichia coli . J Biol Chem 277:27689–27696
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.046623-0
Loading
/content/journal/micro/10.1099/mic.0.046623-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error