1887

Abstract

serovar Sofia ( Sofia) is often isolated from chickens in Australia. However, despite its high frequency of isolation from chicken and chicken meat products, Sofia is rarely associated with animal or human salmonellosis, presumably because this serovar is avirulent in nature. The objective of this work was to investigate the phenotypic and molecular properties of Sofia in order to assess its pathogenic potential. Our studies support the observation that this serovar can colonize tissues, but does not cause disease in chickens. This was further confirmed with tissue culture assays, which showed that the ability of Sofia to adhere, invade and survive intracellularly is significantly diminished compared with the pathogenic serovar Typhimurium ( Typhimurium) 82/6915. Molecular analysis of pathogenicity islands (SPIs) showed that most of the differences observed in SPI1 to SPI5 of Sofia could be attributed to minor changes in the sequences, as indicated by a loss or gain of restriction cleavage sites within these regions. Sequence analysis demonstrated that the majority of virulence genes identified were predicted to encode proteins sharing a high identity (75–100 %) with corresponding proteins from Typhimurium. However, a number of virulence genes in Sofia have accumulated mutations predicted to affect transcription and/or translation. The avirulence of this serovar is probably not the result of a single genetic change but rather of a series of alterations in a large number of virulence-associated genes. The acquisition of any single virulence gene will almost certainly not be sufficient to restore Sofia virulence.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.047001-0
2011-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/4/1056.html?itemId=/content/journal/micro/10.1099/mic.0.047001-0&mimeType=html&fmt=ahah

References

  1. Amavisit P., Lightfoot D., Browning G. F., Markham P. F. 2003; Variation between pathogenic serovars within Salmonella pathogenicity islands. J Bacteriol 185:3624–3635
    [Google Scholar]
  2. Ben-Barak Z., Streckel W., Yaron S., Cohen S., Prager R., Tschäpe H. 2006; The expression of the virulence-associated effector protein gene avrA is dependent on a Salmonella enterica -specific regulatory function. Int J Med Microbiol 296:25–38
    [Google Scholar]
  3. Blanc-Potard A. B., Groisman E. A. 1997; The Salmonella selC locus contains a pathogenicity island mediating intramacrophage survival. EMBO J 16:5376–5385
    [Google Scholar]
  4. Blanc-Potard A. B., Solomon F., Kayser J., Groisman E. A. 1999; The SPI-3 pathogenicity island of Salmonella enterica . J Bacteriol 181:998–1004
    [Google Scholar]
  5. Buchmeier N. A., Heffron F. 1989; Intracellular survival of wild-type Salmonella typhimurium and macrophage-sensitive mutants in diverse populations of macrophages. Infect Immun 57:1–7
    [Google Scholar]
  6. Chadfield M. S., Brown D. J., Aabo S., Christensen J. P., Olsen J. E. 2003; Comparison of intestinal invasion and macrophage response of Salmonella Gallinarum and other host-adapted Salmonella enterica serovars in the avian host. Vet Microbiol 92:49–64
    [Google Scholar]
  7. Chakravortty D., Rohde M., Jäger L., Deiwick J., Hensel M. 2005; Formation of a novel surface structure encoded by Salmonella pathogenicity island 2. EMBO J 24:2043–2052
    [Google Scholar]
  8. Chappell L., Kaiser P., Barrow P., Jones M. A., Johnston C., Wigley P. 2009; The immunobiology of avian systemic salmonellosis. Vet Immunol Immunopathol 128:53–59
    [Google Scholar]
  9. Chia T. W., Fegan N., McMeekin T. A., Dykes G. A. 2008; Salmonella Sofia differs from other poultry-associated Salmonella serovars with respect to cell surface hydrophobicity. J Food Prot 71:2421–2428
    [Google Scholar]
  10. Chia T. W., Goulter R. M., McMeekin T. A., Dykes G. A., Fegan N. 2009; Attachment of different Salmonella serovars to materials commonly used in a poultry processing plant. Food Microbiol 26:853–859
    [Google Scholar]
  11. Collier-Hyams L. S., Zeng H., Sun J., Tomlinson A. D., Bao Z. Q., Chen H., Madara J. L., Orth K., Neish A. S. 2002; Cutting edge: Salmonella AvrA effector inhibits the key proinflammatory, anti-apoptotic NF- κ B pathway. J Immunol 169:2846–2850
    [Google Scholar]
  12. Cooper G. L., Venables L. M., Nicholas R. A. J., Cullen G. A., Hormaeche C. E. 1992; Vaccination of chickens with chicken-derived Salmonella enteritidis phage type 4 aroA live oral Salmonella vaccines. Vaccine 10:247–254
    [Google Scholar]
  13. Cox N. A., Richardson L. J., Buhr R. J., Northcutt J. K., Bailey J. S., Cray P. F., Hiett K. L. 2007; Recovery of Campylobacter and Salmonella serovars from the spleen, liver and gallbladder, and ceca of six-and eight-week-old commercial broilers. J Appl Poult Res 16:477–480
    [Google Scholar]
  14. Darwin K. H., Miller V. L. 1999; Molecular basis of the interaction of Salmonella with the intestinal mucosa. Clin Microbiol Rev 12:405–428
    [Google Scholar]
  15. Desin T. S., Wisner A. L., Lam P.-K. S., Berberov E., Mickael C. S., Potter A. A., Köster W. 2010; Evaluation of Salmonella enterica serovar Enteritidis pathogenicity island-1 proteins as vaccine candidates against S. Enteritidis challenge in chickens. Vet Microbiol Sep 15 [Epub ahead of print]
    [Google Scholar]
  16. Dieye Y., Ameiss K., Mellata M., Curtiss R. III 2009; The Salmonella pathogenicity island (SPI) 1 contributes more than SPI2 to the colonization of the chicken by Salmonella enterica serovar Typhimurium. BMC Microbiol 9:3
    [Google Scholar]
  17. Dorsey C. W., Laarakker M. C., Humphries A. D., Weening E. H., Bäumler A. J. 2005; Salmonella enterica serotype Typhimurium MisL is an intestinal colonization factor that binds fibronectin. Mol Microbiol 57:196–211
    [Google Scholar]
  18. Elsinghorst E. A. 1994; Measurement of invasion by gentamicin resistance. Methods Enzymol 236:405–420
    [Google Scholar]
  19. Fierer J., Guiney D. G. 2001; Diverse virulence traits underlying different clinical outcomes of Salmonella infection. J Clin Invest 107:775–780
    [Google Scholar]
  20. Gal-Mor O., Finlay B. B. 2006; Pathogenicity islands: a molecular toolbox for bacterial virulence. Cell Microbiol 8:1707–1719
    [Google Scholar]
  21. Galyov E. E., Wood M. W., Rosqvist R., Mullan P. B., Watson P. R., Hedges S., Wallis T. S. 1997; A secreted effector protein of Salmonella dublin is translocated into eukaryotic cells and mediates inflammation and fluid secretion in infected ileal mucosa. Mol Microbiol 25:903–912
    [Google Scholar]
  22. Gast R. K. 1994; Understanding Salmonella enteritidis in laying chickens: the contributions of experimental infections. Int J Food Microbiol 21:107–116
    [Google Scholar]
  23. Gerlach R. G., Jäckel D., Stecher B., Wagner C., Lupas A., Hardt W. D., Hensel M. 2007; Salmonella pathogenicity island 4 encodes a giant non-fimbrial adhesin and the cognate type 1 secretion system. Cell Microbiol 9:1834–1850
    [Google Scholar]
  24. Ginocchio C. C., Rahn K., Clarke R. C., Galán J. E. 1997; Naturally occurring deletions in the centisome 63 pathogenicity island of environmental isolates of Salmonella spp. Infect Immun 65:1267–1272
    [Google Scholar]
  25. Hansen-Wester I., Chakravortty D., Hensel M. 2004; Functional transfer of Salmonella pathogenicity island 2 to Salmonella bongori and Escherichia coli . Infect Immun 72:2879–2888
    [Google Scholar]
  26. Harrington C. S., Lanser J. A., Manning P. A., Murray C. J. 1991; Epidemiology of Salmonella sofia in Australia. Appl Environ Microbiol 57:223–227
    [Google Scholar]
  27. Hensel M. 2000; Salmonella pathogenicity island 2. Mol Microbiol 36:1015–1023
    [Google Scholar]
  28. Hensel M., Shea J. E., Gleeson C., Jones M. D., Dalton E., Holden D. W. 1995; Simultaneous identification of bacterial virulence genes by negative selection. Science 269:400–403
    [Google Scholar]
  29. Hentschel U., Hacker J. 2001; Pathogenicity islands: the tip of the iceberg. Microbes Infect 3:545–548
    [Google Scholar]
  30. Heuzenroeder M. W., Murray C. J., Dalcin R. M., Barton M. 2001; Molecular Basis of Benign Colonisation of Salmonella Sofia in Chickens. A report for the Rural Industries Research and Development Corporation
    [Google Scholar]
  31. Hong K. H., Miller V. L. 1998; Identification of a novel Salmonella invasion locus homologous to Shigella ipgDE . J Bacteriol 180:1793–1802
    [Google Scholar]
  32. Kimbrough T. G., Miller S. I. 2000; Contribution of Salmonella typhimurium type III secretion components to needle complex formation. Proc Natl Acad Sci U S A 97:11008–11013
    [Google Scholar]
  33. Klein J. R., Jones B. D. 2001; Salmonella pathogenicity island 2-encoded proteins SseC and SseD are essential for virulence and are substrates of the type III secretion system. Infect Immun 69:737–743
    [Google Scholar]
  34. Kubori T., Matsushima Y., Nakamura D., Uralil J., Lara-Tejero M., Sukhan A., Galán J. E., Aizawa S. I. 1998; Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280:602–605
    [Google Scholar]
  35. Kubori T., Sukhan A., Aizawa S. I., Galán J. E. 2000; Molecular characterization and assembly of the needle complex of the Salmonella typhimurium type III protein secretion system. Proc Natl Acad Sci U S A 97:10225–10230
    [Google Scholar]
  36. Lawley T. D., Chan K., Thompson L. J., Kim C. C., Govoni G. R., Monack D. M. 2006; Genome-wide screen for Salmonella genes required for long-term systemic infection of the mouse. PLoS Pathog 2:e11
    [Google Scholar]
  37. Lowe G. H. 1962; A2.7.23 ONPG broth. In Cowan and Steel's Manual for Identification of Medical Bacteria, 2nd edn.p– 152 Edited by Cowan S. T. Cambridge, UK: Cambridge University Press;
    [Google Scholar]
  38. Marcus S. L., Brumell J. H., Pfeifer C. G., Finlay B. B. 2000; Salmonella pathogenicity islands: big virulence in small packages. Microbes Infect 2:145–156
    [Google Scholar]
  39. Meade K. G., Narciandi F., Cahalane S., Reiman C., Allan B., O'Farrelly C. 2009; Comparative in vivo infection models yield insights on early host immune response to Campylobacter in chickens. Immunogenetics 61:101–110
    [Google Scholar]
  40. Mellor G. E., Duffy L. L., Dykes G. A., Fegan N. 2010; Relative prevalence of Salmonella Sofia on broiler chickens pre- and postprocessing in Australia. Poult Sci 89:1544–1548
    [Google Scholar]
  41. Miki T., Shibagaki Y., Danbara H., Okada N. 2009; Functional characterization of SsaE, a novel chaperone protein of the type III secretion system encoded by Salmonella pathogenicity island 2. J Bacteriol 191:6843–6854
    [Google Scholar]
  42. Morgan E., Campbell J. D., Rowe S. C., Bispham J., Stevens M. P., Bowen A. J., Barrow P. A., Maskell D. J., Wallis T. S. 2004; Identification of host-specific colonization factors of Salmonella enterica serovar Typhimurium. Mol Microbiol 54:994–1010
    [Google Scholar]
  43. Morgan E., Bowen A. J., Carnell S. C., Wallis T. S., Stevens M. P. 2007; SiiE is secreted by the Salmonella enterica serovar Typhimurium pathogenicity island 4-encoded secretion system and contributes to intestinal colonization in cattle. Infect Immun 75:1524–1533
    [Google Scholar]
  44. Murli S., Watson R. O., Galán J. E. 2001; Role of tyrosine kinases and the tyrosine phosphatase SptP in the interaction of Salmonella with host cells. Cell Microbiol 3:795–810
    [Google Scholar]
  45. Ochman H., Groisman E. A. 1996; Distribution of pathogenicity islands in Salmonella spp. Infect Immun 64:5410–5412
    [Google Scholar]
  46. Ochman H., Soncini F. C., Solomon F., Groisman E. A. 1996; Identification of a pathogenicity island required for Salmonella survival in host cells. Proc Natl Acad Sci U S A 93:7800–7804
    [Google Scholar]
  47. Pfeifer C. G., Marcus S. L., Steele-Mortimer O., Knodler L. A., Finlay B. B. 1999; Salmonella typhimurium virulence genes are induced upon bacterial invasion into phagocytic and nonphagocytic cells. Infect Immun 67:5690–5698
    [Google Scholar]
  48. Porwollik S., Wong R. M., McClelland M. 2002; Evolutionary genomics of Salmonella : gene acquisitions revealed by microarray analysis. Proc Natl Acad Sci U S A 99:8956–8961
    [Google Scholar]
  49. Reichardt M., Rogers S. 1994; Preparation of genomic DNA from plant tissue. In Current Protocols In Molecular Biology vol 1 pp 21–27 Edited by Ausubel F. M., Brent R., Kinston R. E., Moore D. M., Smith J. A., Struhl K. New York: John Wiley & Sons, Inc;
    [Google Scholar]
  50. Rickard S. 1998; Investigations into the pathogenic potential of Salmonella sofia. PhD thesis RMIT University; Melbourne, Australia:
    [Google Scholar]
  51. Rychlik I., Karasova D., Sebkova A., Volf J., Sisak F., Havlickova H., Kummer V., Imre A., Szmolka A., Nagy B. 2009; Virulence potential of five major pathogenicity islands (SPI-1 to SPI-5) of Salmonella enterica serovar Enteritidis for chickens. BMC Microbiol 9:268
    [Google Scholar]
  52. Shaw C., Clarke P. H. 1955; A2.7.17 Malonate-phenylalanine medium. In Cowan and Steel's Manual for Identification of Medical Bacteria, 2nd edn.p– 152 Edited by Cowan S. T. Cambridge, UK: Cambridge University Press;
    [Google Scholar]
  53. Sukhan A., Kubori T., Wilson J., Galán J. E. 2001; Genetic analysis of assembly of the Salmonella enterica serovar Typhimurium type III secretion-associated needle complex. J Bacteriol 183:1159–1167
    [Google Scholar]
  54. Tükel C., Akçelik M., de Jong M. F., Şimşek Ö., Tsolis R. M., Bäumler A. J. 2007; MarT activates expression of the MisL autotransporter protein of Salmonella enterica serotype Typhimurium. J Bacteriol 189:3922–3926
    [Google Scholar]
  55. Wallis T. S. 2006; Host-specificity of Salmonella infections in animal species. In Salmonella Infections: Clinical, Immunological and Molecular Aspects (Advances in Molecular and Cellular Microbiology) pp 89–116 Edited by Mastroeni P. M., Maskell D. Cambridge, UK: Cambridge University Press;
    [Google Scholar]
  56. Wisner A. L., Desin T. S., Koch B., Lam P. K., Berberov E. M., Mickael C. S., Potter A. A., Köster W. 2010; Salmonella enterica subspecies enterica serovar Enteritidis Salmonella pathogenicity island 2 type III secretion system: role in intestinal colonization of chickens and systemic spread. Microbiology 156:2770–2781
    [Google Scholar]
  57. Wong K. K., McClelland M., Stillwell L. C., Sisk E. C., Thurston S. J., Saffer J. D. 1998; Identification and sequence analysis of a 27-kilobase chromosomal fragment containing a Salmonella pathogenicity island located at 92 minutes on the chromosome map of Salmonella enterica serovar Typhimurium LT2. Infect Immun 66:3365–3371
    [Google Scholar]
  58. Wood M. W., Jones M. A., Watson P. R., Hedges S., Wallis T. S., Galyov E. E. 1998; Identification of a pathogenicity island required for Salmonella enteropathogenicity. Mol Microbiol 29:883–891
    [Google Scholar]
  59. Zhang S., Kingsley R. A., Santos R. L., Andrews-Polymenis H., Raffatellu M., Figueiredo J., Nunes J., Tsolis R. M., Adams L. G., Bäumler A. J. 2003; Molecular pathogenesis of Salmonella enterica serotype Typhimurium-induced diarrhea. Infect Immun 71:1–12
    [Google Scholar]
  60. Zierler M. K., Galán J. E. 1995; Contact with cultured epithelial cells stimulates secretion of Salmonella typhimurium invasion protein InvJ. Infect Immun 63:4024–4028
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.047001-0
Loading
/content/journal/micro/10.1099/mic.0.047001-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error