1887

Abstract

possesses interlinked routes for the synthesis of proline. The ProJ–ProA–ProH route is responsible for the production of proline as an osmoprotectant, and the ProB–ProA–ProI route provides proline for protein synthesis. We show here that the transcription of the anabolic and genes is controlled in response to proline limitation via a T-box-mediated termination/antitermination regulatory mechanism, a tRNA-responsive riboswitch. Primer extension analysis revealed mRNA leader transcripts of 270 and 269 nt for the and genes, respectively, both of which are synthesized from SigA-type promoters. These leader transcripts are predicted to fold into two mutually exclusive secondary mRNA structures, forming either a terminator or an antiterminator configuration. Northern blot analysis allowed the detection of both the leader and the full-length and transcripts. Assessment of the level of the transcripts revealed that the amount of the full-length mRNA species strongly increased in proline-starved cultures. Genetic studies with a operon fusion reporter strain demonstrated that transcription is sensitively tied to proline availability and is derepressed as soon as cellular starvation for proline sets in. Both the and the leader sequences contain a CCU proline-specific specifier codon prone to interact with the corresponding uncharged proline-specific tRNA. By replacing the CCU proline specifier codon in the T-box leader with UUC, a codon recognized by a Phe-specific tRNA, we were able to synthetically re-engineer the proline-specific control of transcription to a control that was responsive to starvation for phenylalanine.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.047357-0
2011-04-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/4/977.html?itemId=/content/journal/micro/10.1099/mic.0.047357-0&mimeType=html&fmt=ahah

References

  1. Akashi H., Gojobori T. 2002; Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis . Proc Natl Acad Sci U S A 99:3695–3700
    [Google Scholar]
  2. Belitsky B. R., Brill J., Bremer E., Sonenshein A. L. 2001; Multiple genes for the last step of proline biosynthesis in Bacillus subtilis . J Bacteriol 183:4389–4392
    [Google Scholar]
  3. Bremer E. 2002; Adaptation to changing osmolarity. In Bacillus subtilis and its Closest Relatives pp 385–391 Edited by Sonenshein A. L., Hoch J. A., Losick R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  4. Chen M., Cao J., Zheng C., Liu Q. 2006; Directed evolution of an artificial bifunctional enzyme, γ -glutamyl kinase/ γ -glutamyl phosphate reductase, for improved osmotic tolerance of Escherichia coli transformants. FEMS Microbiol Lett 263:41–47
    [Google Scholar]
  5. Chen M., Wei H., Cao J., Liu R., Wang Y., Zheng C. 2007; Expression of Bacillus subtilis proBA genes and reduction of feedback inhibition of proline synthesis increases proline production and confers osmotolerance in transgenic Arabidopsis . J Biochem Mol Biol 40:396–403
    [Google Scholar]
  6. Chopin A., Biaudet V., Ehrlich S. D. 1998; Analysis of the Bacillus subtilis genome sequence reveals nine new T-box leaders. Mol Microbiol 29:662–664
    [Google Scholar]
  7. Condon C., Putzer H., Grunberg-Manago M. 1996; Processing of the leader mRNA plays a major role in the induction of thrS expression following threonine starvation in Bacillus subtilis . Proc Natl Acad Sci U S A 93:6992–6997
    [Google Scholar]
  8. Csonka L. N., Leisinger T. 2007 ). Chapter 34.6.1.4, Biosynthesis of proline. In EcoSal-Escherichia coli and Salmonella: Cellular and Molecular Biology Edited by Böck A., Curtis R. III, Kaper J. B., Karp P. D., Neidhardt F. C., Nystrom T., Slauch J. M., Squires C. L., Ussery D. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  9. Even S., Pellegrini O., Zig L., Labas V., Vinh J., , Bréchemmier-Baey D., Putzer H. 2005; Ribonucleases J1 and J2: two novel endoribonucleases in B. subtilis with functional homology to E. coli RNase E. Nucleic Acids Res 33:2141–2152
    [Google Scholar]
  10. Fisher S. H., Debarbouille M. 2002; Nitrogen source utilization and its regulation. In Bacillus subtilis and its Closest Relatives pp 181–231 Edited by Sonenshein A. L., Hoch J. A., Losick R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  11. Foy N., Jester B., Conant G. C., Devine K. M. 2010; The T box regulatory element controlling expression of the class I lysyl-tRNA synthetase of Bacillus cereus strain 14579 is functional and can be partially induced by reduced charging of asparaginyl-tRNAAsn. BMC Microbiol 10:196
    [Google Scholar]
  12. Gotsche S., Dahl M. K. 1995; Purification and characterization of the phospho- α (1,1)glucosidase (TreA) of Bacillus subtilis 168. J Bacteriol 177:2721–2726
    [Google Scholar]
  13. Green N. J., Grundy F. J., Henkin T. M. 2010; The T box mechanism: tRNA as a regulatory molecule. FEBS Lett 584:318–324
    [Google Scholar]
  14. Grundy F. J., Henkin T. M. 1993; tRNA as a positive regulator of transcription antitermination in B. subtilis . Cell 74:475–482
    [Google Scholar]
  15. Grundy F. J., Hodil S. E., Rollins S. M., Henkin T. M. 1997; Specificity of tRNA–mRNA interactions in Bacillus subtilis tyrS antitermination. J Bacteriol 179:2587–2594
    [Google Scholar]
  16. Grundy F. J., Yousef M. R., Henkin T. M. 2005; Monitoring uncharged tRNA during transcription of the Bacillus subtilis glyQS gene. J Mol Biol 346:73–81
    [Google Scholar]
  17. Gutiérrez-Preciado A., Henkin T. M., Grundy F. J., Yanofsky C., Merino E. 2009; Biochemical features and functional implications of the RNA-based T-box regulatory mechanism. Microbiol Mol Biol Rev 73:36–61
    [Google Scholar]
  18. Hahne H., Mäder U., Otto A., Bonn F., Steil L., Bremer E., Hecker M., Becher D. 2010; A comprehensive proteomics and transcriptomics analysis of Bacillus subtilis salt stress adaptation. J Bacteriol 192:870–882
    [Google Scholar]
  19. Harwood C. R., Archibald A. R. 1990; Growth, maintenance and general techniques. In Molecular Biological Methods for Bacillus pp 1–26 Edited by Harwood C. R., Cutting S. M. Chichester, UK: John Wiley & Sons;
    [Google Scholar]
  20. Helmann J. D. 1995; Compilation and analysis of Bacillus subtilis σ A-dependent promoter sequences: evidence for extended contact between RNA polymerase and upstream promoter DNA. Nucleic Acids Res 23:2351–2360
    [Google Scholar]
  21. Henkin T. M. 2008; Riboswitch RNAs: using RNA to sense cellular metabolism. Genes Dev 22:3383–3390
    [Google Scholar]
  22. Holtmann G., Bremer E. 2004; Thermoprotection of Bacillus subtilis by exogenously provided glycine betaine and structurally related compatible solutes: involvement of Opu transporters. J Bacteriol 186:1683–1693
    [Google Scholar]
  23. Itaya M. 1992; Construction of a novel tetracycline resistance gene cassette useful as a marker on the Bacillus subtilis chromosome. Biosci Biotechnol Biochem 56:685–686
    [Google Scholar]
  24. Kanaya S., Yamada Y., Kudo Y., Ikemura T. 1999; Studies of codon usage and tRNA genes of 18 unicellular organisms and quantification of Bacillus subtilis tRNAs: gene expression level and species-specific diversity of codon usage based on multivariate analysis. Gene 238:143–155
    [Google Scholar]
  25. Kappes R. M., Kempf B., Kneip S., Boch J., Gade J., Meier-Wagner J., Bremer E. 1999; Two evolutionarily closely related ABC transporters mediate the uptake of choline for synthesis of the osmoprotectant glycine betaine in Bacillus subtilis . Mol Microbiol 32:203–216
    [Google Scholar]
  26. Kempf B., Bremer E. 1998; Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol 170:319–330
    [Google Scholar]
  27. Luo D., Leautey J., Grunberg-Manago M., Putzer H. 1997; Structure and regulation of expression of the Bacillus subtilis valyl-tRNA synthetase gene. J Bacteriol 179:2472–2478
    [Google Scholar]
  28. Marta P. T., Ladner R. D., Grandoni J. A. 1996; A CUC triplet confers leucine-dependent regulation of the Bacillus subtilis ilv-leu operon. J Bacteriol 178:2150–2153
    [Google Scholar]
  29. Miller J. H. 1992 A Short Course in Bacterial Genetics. A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  30. Ogura M., Kawata-Mukai M., Itaya M., Takio K., Tanaka T. 1994; Multiple copies of the proB gene enhance degS -dependent extracellular protease production in Bacillus subtilis . J Bacteriol 176:5673–5680
    [Google Scholar]
  31. Ordal G. W., Gibson K. J. 1977; Chemotaxis toward amino acids by Bacillus subtilis . J Bacteriol 129:151–155
    [Google Scholar]
  32. Putzer H., Laalami S., Brakhage A. A., Condon C., Grunberg-Manago M. 1995; Aminoacyl-tRNA synthetase gene regulation in Bacillus subtilis : induction, repression and growth-rate regulation. Mol Microbiol 16:709–718
    [Google Scholar]
  33. Putzer H., Condon C., Brechemier-Baey D., Brito R., Grunberg-Manago M. 2002; Transfer RNA-mediated antitermination in vitro . Nucleic Acids Res 30:3026–3033
    [Google Scholar]
  34. Sambrook J., Fritsch E. F., Maniatis T. E. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  35. Schöck F., Gotsche S., Dahl M. K. 1996; Vectors using the phospho- α -(1,1)-glucosidase-encoding gene treA of Bacillus subtilis as a reporter. Gene 170:77–80
    [Google Scholar]
  36. Spiegelhalter F., Bremer E. 1998; Osmoregulation of the opuE proline transport gene from Bacillus subtilis : contributions of the sigma A- and sigma B-dependent stress-responsive promoters. Mol Microbiol 29:285–296
    [Google Scholar]
  37. Steil L., Hoffmann T., Budde I., , Völker U., Bremer E. 2003; Genome-wide transcriptional profiling analysis of adaptation of Bacillus subtilis to high salinity. J Bacteriol 185:6358–6370
    [Google Scholar]
  38. Vitreschak A. G., Mironov A. A., Lyubetsky V. A., Gelfand M. S. 2008; Comparative genomic analysis of T-box regulatory systems in bacteria. RNA 14:717–735
    [Google Scholar]
  39. von Blohn C., Kempf B., Kappes R. M., Bremer E. 1997; Osmostress response in Bacillus subtilis : characterization of a proline uptake system (OpuE) regulated by high osmolarity and the alternative transcription factor sigma B. Mol Microbiol 25:175–187
    [Google Scholar]
  40. Wels M., Groot Kormelink T., Kleerebezem M., Siezen R. J., Francke C. 2008; An in silico analysis of T-box regulated genes and T-box evolution in prokaryotes, with emphasis on prediction of substrate specificity of transporters. BMC Genomics 9:330
    [Google Scholar]
  41. Whatmore A. M., Chudek J. A., Reed R. H. 1990; The effects of osmotic upshock on the intracellular solute pools of Bacillus subtilis . J Gen Microbiol 136:2527–2535
    [Google Scholar]
  42. Winkler W. C. 2007; RNA-mediated regulation in Bacillus subtilis . In Bacillus: Cellular and Molecular Biology pp 167–214 Edited by Graumann P. Norfolk, UK: Caister Academic Press;
    [Google Scholar]
  43. Yamada Y., Matsugi J., Ishikura H., Murao K. 2005; Bacillus subtilis tRNAPro with the anticodon mo5UGG can recognize the codon CCC. Biochim Biophys Acta 1728143–149
    [Google Scholar]
  44. Yousef M. R., Grundy F. J., Henkin T. M. 2005; Structural transitions induced by the interaction between tRNAGly and the Bacillus subtilis glyQS T box leader RNA. J Mol Biol 349:273–287
    [Google Scholar]
  45. Zuker M. 2003; Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.047357-0
Loading
/content/journal/micro/10.1099/mic.0.047357-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error