RT Journal Article SR Electronic(1) A1 Petrovski, Steve A1 Stanisich, Vilma A.YR 2011 T1 Embedded elements in the IncPβ plasmids R772 and R906 can be mobilized and can serve as a source of diverse and novel elements JF Microbiology, VO 157 IS 6 SP 1714 OP 1725 DO https://doi.org/10.1099/mic.0.047761-0 PB Microbiology Society, SN 1465-2080, AB IncP plasmids are important contributors to bacterial adaptation. Their phenotypic diversity is due largely to accessory regions located in one or two specific parts of the plasmid. The accessory regions are themselves diverse, as judged from sequenced plasmids mostly isolated from non-clinical sources. To further understand the diversity, evolutionary history and functional attributes of the accessory regions, we compared R906 and R772, focusing on the oriV–trfA accessory region. These IncPβ plasmids were from porcine and clinical sources, respectively. We found that the accessory regions formed potentially mobile elements, Tn510 (from R906) and Tn511 (from R772), that differed internally but had identical borders. Both elements appeared to have evolved from a TnAO22-like mer transposon that had inserted into an ancestral IncPβ plasmid and then accrued additional transposable elements and genes from various proteobacteria. Structural comparisons suggested that Tn510 (and a descendent in pB10), Tn511 and the mer element in pJP4 represent three lineages that evolved from the same widely dispersed IncPβ carrier. Functional studies on Tn511 revealed that its mer module is inactive due to a merT mutation, and that its aphAI region is prone to deletion. More significantly, we showed that by providing a suitable transposase gene in trans, the defective Tn510 and Tn511 could transpose intact or in part, and could also generate new elements (stable cointegrates and novel transposons). The ingredients for assisted transposition events similar to those observed here occur in natural microcosms, providing non-self-mobile elements with avenues for dispersal to new replicons and for structural diversification. This work provides an experimental demonstration of how the complex embedded elements uncovered in IncP plasmids and in other plasmid families may have been generated., UL https://www.microbiologyresearch.org/content/journal/micro/10.1099/mic.0.047761-0