1887

Abstract

Two regulators, Aur1P and Aur1R, have been previously found to control expression of the polyketide gene cluster involved in biosynthesis of the angucycline-like antibiotic auricin in CCM 3239 in a cascade mechanism. Here, we describe the characterization of two additional regulatory genes, and , encoding homologues of the SARP family of transcriptional activators that were identified in the upstream part of the cluster. Expression of both genes is directed by a single promoter, and , respectively, induced in late exponential phase. Disruption of in CCM 3239 had no effect on auricin production. However, the disruption of dramatically reduced auricin compared with its parental wild-type strain. Transcription from the promoter, directing expression of the first biosynthetic gene in the auricin gene cluster, was similarly decreased in the CCM 3239 mutant. Transcription from the promoter increased in the CCM 3239 mutant strain, and the TetR family negative regulator Aur1R was shown to specifically bind the promoter. These results indicate a complex regulation of the auricin cluster by the additional SARP family transcriptional activator Aur1PR3.

Funding
This study was supported by the:
  • Slovak Research and Development Agency (Award APVV-0017-07)
  • VEGA (Award 2/0104/09)
  • European Regional Development Fund
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.047795-0
2011-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/6/1629.html?itemId=/content/journal/micro/10.1099/mic.0.047795-0&mimeType=html&fmt=ahah

References

  1. Aigle B., Pang X., Decaris B., Leblond P. ( 2005). Involvement of AlpV, a new member of the Streptomyces antibiotic regulatory protein family, in regulation of the duplicated type II polyketide synthase alp gene cluster in Streptomyces ambofaciens . J Bacteriol 187:2491–2500 [View Article][PubMed]
    [Google Scholar]
  2. Arias P., Fernández-Moreno M. A., Malpartida F. ( 1999). Characterization of the pathway-specific positive transcriptional regulator for actinorhodin biosynthesis in Streptomyces coelicolor A3(2) as a DNA-binding protein. J Bacteriol 181:6958–6968[PubMed]
    [Google Scholar]
  3. Ausubel F. M., Brent R., Kingston R. E., Moore D. O., Seidman J. S., Smith J. A., Struhl K. ( 1995). Current Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  4. Bibb M. J. ( 2005). Regulation of secondary metabolism in streptomycetes. Curr Opin Microbiol 8:208–215 [View Article][PubMed]
    [Google Scholar]
  5. Bradford M. M. ( 1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 [View Article][PubMed]
    [Google Scholar]
  6. Bunet R., Song L., Mendes M. V., Corre C., Hotel L., Rouhier N., Framboisier X., Leblond P., Challis G. L., Aigle B. ( 2011). Characterization and manipulation of the pathway-specific late regulator AlpW reveals Streptomyces ambofaciens as a new producer of kinamycins. J Bacteriol 193:1142–1153 [View Article][PubMed]
    [Google Scholar]
  7. Cundliffe E. ( 2008). Control of tylosin biosynthesis in Streptomyces fradiae . J Microbiol Biotechnol 18:1485–1491[PubMed]
    [Google Scholar]
  8. Fernández-Moreno M. A., Caballero J. L., Hopwood D. A., Malpartida F. ( 1991). The act cluster contains regulatory and antibiotic export genes, direct targets for translational control by the bldA tRNA gene of Streptomyces . Cell 66:769–780 [View Article][PubMed]
    [Google Scholar]
  9. Folcher M., Gaillard H., Nguyen L. T., Nguyen K. T., Lacroix P., Bamas-Jacques N., Rinkel M., Thompson C. J. ( 2001). Pleiotropic functions of a Streptomyces pristinaespiralis autoregulator receptor in development, antibiotic biosynthesis, and expression of a superoxide dismutase. J Biol Chem 276:44297–44306 [View Article][PubMed]
    [Google Scholar]
  10. Gottelt M., Kol S., Gomez-Escribano J. P., Bibb M., Takano E. ( 2010). Deletion of a regulatory gene within the cpk gene cluster reveals novel antibacterial activity in Streptomyces coelicolor A3(2). Microbiology 156:2343–2353 [View Article][PubMed]
    [Google Scholar]
  11. Gramajo H. C., Takano E., Bibb M. J. ( 1993). Stationary-phase production of the antibiotic actinorhodin in Streptomyces coelicolor A3(2) is transcriptionally regulated. Mol Microbiol 7:837–845 [View Article][PubMed]
    [Google Scholar]
  12. Gust B., Challis G. L., Fowler K., Kieser T., Chater K. F. ( 2003). PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci U S A 100:1541–1546 [View Article][PubMed]
    [Google Scholar]
  13. Horinouchi S., Hara O., Beppu T. ( 1983). Cloning of a pleiotropic gene that positively controls biosynthesis of A-factor, actinorhodin, and prodigiosin in Streptomyces coelicolor A3(2) and Streptomyces lividans . J Bacteriol 155:1238–1248[PubMed]
    [Google Scholar]
  14. Kang J.-G., Hahn M.-Y., Ishihama A., Roe J.-H. ( 1997). Identification of sigma factors for growth phase-related promoter selectivity of RNA polymerases from Streptomyces coelicolor A3(2). Nucleic Acids Res 25:2566–2573 [View Article][PubMed]
    [Google Scholar]
  15. Kieser T., Bibb M. J., Buttner M. J., Chater K. F., Hopwood D. A. ( 2000). Practical Streptomyces genetics Norwich, UK: The John Innes Foundation;
    [Google Scholar]
  16. Kormanec J. ( 2001). Analyzing the developmental expression of sigma factors with S1-nuclease mapping. Nuclease Methods and Protocols. Methods in Molecular Biology vol. 160481–494 Chein C. H. Totowa, NJ: Humana Press; [View Article]
    [Google Scholar]
  17. Kormanec J., Farkasovský M. ( 1993). Differential expression of principal sigma factor homologues of Streptomyces aureofaciens correlates with the developmental stage. Nucleic Acids Res 21:3647–3652 [View Article][PubMed]
    [Google Scholar]
  18. Lombó F., Braña A. F., Salas J. A., Méndez C. ( 2004). Genetic organization of the biosynthetic gene cluster for the antitumor angucycline oviedomycin in Streptomyces antibioticus ATCC 11891. ChemBioChem 5:1181–1187 [View Article][PubMed]
    [Google Scholar]
  19. Martín J. F., Liras P. ( 2010). Engineering of regulatory cascades and networks controlling antibiotic biosynthesis in Streptomyces . Curr Opin Microbiol 13:263–273 [View Article][PubMed]
    [Google Scholar]
  20. Maxam A. M., Gilbert W. ( 1980). Sequencing end-labelled DNA with base specific chemical cleavages. Methods Enzymol 65:499–560[PubMed]
    [Google Scholar]
  21. Metsä-Ketelä M., Ylihonko K., Mäntsälä P. ( 2004). Partial activation of a silent angucycline-type gene cluster from a rubromycin beta producing Streptomyces sp. PGA64. J Antibiot (Tokyo) 57:502–510[PubMed] [CrossRef]
    [Google Scholar]
  22. Nishida H., Ohnishi Y., Beppu T., Horinouchi S. ( 2007). Evolution of γ-butyrolactone synthases and receptors in Streptomyces . Environ Microbiol 9:1986–1994 [View Article][PubMed]
    [Google Scholar]
  23. Novakova R., Bistakova J., Homerova D., Rezuchova B., Kormanec J. ( 2002). Cloning and characterization of a polyketide synthase gene cluster involved in biosynthesis of a proposed angucycline-like polyketide auricin in Streptomyces aureofaciens CCM 3239. Gene 297:197–208 [View Article][PubMed]
    [Google Scholar]
  24. Novakova R., Homerova D., Feckova L., Kormanec J. ( 2005). Characterization of a regulatory gene essential for the production of the angucycline-like polyketide antibiotic auricin in Streptomyces aureofaciens CCM 3239. Microbiology 151:2693–2706 [View Article][PubMed]
    [Google Scholar]
  25. Novakova R., Kutas P., Feckova L., Kormanec J. ( 2010a). The role of the TetR-family transcriptional regulator Aur1R in negative regulation of the auricin gene cluster in Streptomyces aureofaciens CCM 3239. Microbiology 156:2374–2383 [View Article][PubMed]
    [Google Scholar]
  26. Novakova R., Odnogova Z., Kutas P., Feckova L., Kormanec J. ( 2010b). Identification and characterization of an indigoidine-like gene for a blue pigment biosynthesis in Streptomyces aureofaciens CCM 3239. Folia Microbiol (Praha) 55:119–125 [View Article][PubMed]
    [Google Scholar]
  27. Onaka H., Horinouchi S. ( 1997). DNA-binding activity of the A-factor receptor protein and its recognition DNA sequences. Mol Microbiol 24:991–1000 [View Article][PubMed]
    [Google Scholar]
  28. Pang X., Aigle B., Girardet J.-M., Mangenot S., Pernodet J.-L., Decaris B., Leblond P. ( 2004). Functional angucycline-like antibiotic gene cluster in the terminal inverted repeats of the Streptomyces ambofaciens linear chromosome. Antimicrob Agents Chemother 48:575–588 [View Article][PubMed]
    [Google Scholar]
  29. Sheldon P. J., Busarow S. B., Hutchinson C. R. ( 2002). Mapping the DNA-binding domain and target sequences of the Streptomyces peucetius daunorubicin biosynthesis regulatory protein, DnrI. Mol Microbiol 44:449–460 [View Article][PubMed]
    [Google Scholar]
  30. Smokvina T., Mazodier P., Boccard F., Thompson C. J., Guérineau M. ( 1990). Construction of a series of pSAM2-based integrative vectors for use in actinomycetes. Gene 94:53–59 [View Article][PubMed]
    [Google Scholar]
  31. Stratigopoulos G., Bate N., Cundliffe E. ( 2004). Positive control of tylosin biosynthesis: pivotal role of TylR. Mol Microbiol 54:1326–1334 [View Article][PubMed]
    [Google Scholar]
  32. Stutzman-Engwall K. J., Otten S. L., Hutchinson C. R. ( 1992). Regulation of secondary metabolism in Streptomyces spp. and overproduction of daunorubicin in Streptomyces peucetius . J Bacteriol 174:144–154[PubMed]
    [Google Scholar]
  33. Wietzorrek A., Bibb M. ( 1997). A novel family of proteins that regulates antibiotic production in streptomycetes appears to contain an OmpR-like DNA-binding fold. Mol Microbiol 25:1181–1184 [View Article][PubMed]
    [Google Scholar]
  34. Wright F., Bibb M. J. ( 1992). Codon usage in the G+C rich Streptomyces genome. Gene 113:55–65 [View Article][PubMed]
    [Google Scholar]
  35. Xu G., Wang J., Wang L., Tian X., Yang H., Fan K., Yang K., Tan H. ( 2010). “Pseudo” γ-butyrolactone receptors respond to antibiotic signals to coordinate antibiotic biosynthesis. J Biol Chem 285:27440–27448 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.047795-0
Loading
/content/journal/micro/10.1099/mic.0.047795-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error