1887

Abstract

Tetracyclines are clinically important aromatic polyketides whose biosynthesis is catalysed by bacterial type II polyketide synthases (PKSs). Tetracyclines are biosynthesized starting with an amide-containing malonamate starter unit and the resulting C-2 carboxyamide is critical for the antibiotic activities. In this work, we genetically verified that an amidotransferase, OxyD, and a thiolase, OxyP, are involved in the biosynthesis and incorporation of the starter unit. First, two mutations, R248T and D268N, were found to be present in OxyD* encoded in ATCC 13224, a strain that produces the acetate-primed 2-acetyl-2-decarboxyamido-oxytetracycline (ADOTC) instead of the malonamate-primed oxytetracycline (OTC). Homology modelling suggested that in particular D268N may inactivate OxyD. Complementation of ATCC 13224 with wild-type OxyD restored OTC biosynthesis, thereby confirming the essential role of OxyD in the synthesis of the amide starter unit. Second, using a series of knockout and complementation approaches, we demonstrated that OxyP is most likely involved in maintaining fidelity of the amide-priming process via hydrolysis of the competing acetate priming starter units. While the inactivation of OxyP does not eliminate OTC biosynthesis, the ratio of acetate-primed ADOTC to malonamate-primed OTC is significantly increased. This suggests that OxyP plays an ancillary role in OTC biosynthesis and is important for minimizing the levels of ADOTC, a shunt product that has much weaker antibiotic activities than OTC.

Funding
This study was supported by the:
  • NSF (Award 1033070 and 0545860)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.048439-0
2011-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/8/2401.html?itemId=/content/journal/micro/10.1099/mic.0.048439-0&mimeType=html&fmt=ahah

References

  1. Bennett-Lovsey R. M., Herbert A. D., Sternberg M. J. E., Kelley L. A. ( 2008). Exploring the extremes of sequence/structure space with ensemble fold recognition in the program Phyre. Proteins 70:611–625 [View Article][PubMed]
    [Google Scholar]
  2. Bililign T., Hyun C. G., Williams J. S., Czisny A. M., Thorson J. S. ( 2004). The hedamycin locus implicates a novel aromatic PKS priming mechanism. Chem Biol 11:959–969 [View Article][PubMed]
    [Google Scholar]
  3. Chen Y. H., Wendt-Pienkowski E., Ju J. H., Lin S. J., Rajski S. R., Shen B. ( 2010). Characterization of FdmV as an amide synthetase for fredericamycin A biosynthesis in Streptomyces griseus ATCC 43944. J Biol Chem 285:38853–38860 [View Article][PubMed]
    [Google Scholar]
  4. Chopra I., Roberts M. ( 2001). Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 65:232–260 [View Article][PubMed]
    [Google Scholar]
  5. Church R. F. R., Schaub R. E., Weiss M. J. ( 1971). Synthesis of 7-dimethylamino-6-demethyl-6-deoxytetracycline (minocycline) via 9-nitro-6-demethyl-6-deoxytetracycline. J Org Chem 36:723–725 [View Article][PubMed]
    [Google Scholar]
  6. Das A., Khosla C. ( 2009). In vivo and in vitro analysis of the hedamycin polyketide synthase. Chem Biol 16:1197–1207 [View Article][PubMed]
    [Google Scholar]
  7. Doumith M., Weingarten P., Wehmeier U. F., Salah-Bey K., Benhamou B., Capdevila C., Michel J. M., Piepersberg W., Raynal M. C. ( 2000). Analysis of genes involved in 6-deoxyhexose biosynthesis and transfer in Saccharopolyspora erythraea . Mol Gen Genet 264:477–485 [View Article][PubMed]
    [Google Scholar]
  8. Fu H., Ebertkhosla S., Hopwood D. A., Khosla C. ( 1994). Relaxed specificity of the oxytetracycline polyketide synthase for an acetate primer in the absence of a malonamyl primer. J Am Chem Soc 116:6443–6444 [View Article]
    [Google Scholar]
  9. Grimm A., Madduri K., Ali A., Hutchinson C. R. ( 1994). Characterization of the Streptomyces peucetius ATCC 29050 genes encoding doxorubicin polyketide synthase. Gene 151:1–10 [View Article][PubMed]
    [Google Scholar]
  10. Gust B., Challis G. L., Fowler K., Kieser T., Chater K. F. ( 2003). PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci U S A 100:1541–1546 [View Article][PubMed]
    [Google Scholar]
  11. He Y. L., Wang Z. J., Bai L. Q., Liang J. D., Zhou X. F., Deng Z. X. ( 2010). Two pHZ1358-derivative vectors for efficient gene knockout in Streptomyces . J Microbiol Biotechnol 20:678–682 [View Article][PubMed]
    [Google Scholar]
  12. Hertweck C. ( 2009). The biosynthetic logic of polyketide diversity. Angew Chem Int Ed Engl 48:4688–4716 [View Article][PubMed]
    [Google Scholar]
  13. Hertweck C., Luzhetskyy A., Rebets Y., Bechthold A. ( 2007). Type II polyketide synthases: gaining a deeper insight into enzymatic teamwork. Nat Prod Rep 24:162–190 [View Article][PubMed]
    [Google Scholar]
  14. Hochstein F. A., Vonwittenau M. S., Tanner F. W., Murai K. ( 1960). 2-Acetyl-2-decarboxamidooxytetracycline. J Am Chem Soc 82:5934–5937 [View Article]
    [Google Scholar]
  15. Kalaitzis J. A., Cheng Q., Meluzzi D., Xiang L., Izumikawa M., Dorrestein P. C., Moore B. S. ( 2011). Policing starter unit selection of the enterocin type II polyketide synthase by the type II thioesterase EncL. Bioorg Med Chem [View Article][PubMed]
    [Google Scholar]
  16. Kersey R. C. ( 1950). A turbidimetric assay for terramycin. J Am Pharm Assoc Am Pharm Assoc 39:252–253 [View Article][PubMed]
    [Google Scholar]
  17. Kieser T., Bibb M. J., Buttner M. J., Chater K. F., Hopwood D. A. ( 2000). Practical Streptomyces Genetics Norwich: John Innes Foundation;
    [Google Scholar]
  18. Kim B. C., Lee J. M., Ahn J. S., Kim B. S. ( 2007). Cloning, sequencing, and characterization of the pradimicin biosynthetic gene cluster of Actinomadura hibisca P157-2. J Microbiol Biotechnol 17:830–839[PubMed]
    [Google Scholar]
  19. Lancini G. C., Sensi P. ( 1964). Isolation of 2-acetyl-2-decarboxamidotetracycline from cultures of Streptomyces psammoticus . Experientia 20:83–84 [View Article][PubMed]
    [Google Scholar]
  20. Larsen T. M., Boehlein S. K., Schuster S. M., Richards N. G. J., Thoden J. B., Holden H. M., Rayment I. ( 1999). Three-dimensional structure of Escherichia coli asparagine synthetase B: a short journey from substrate to product. Biochemistry 38:16146–16157 [View Article][PubMed]
    [Google Scholar]
  21. Lykkeberg A. K., Sengeløv G., Cornett C., Tjørnelund J., Hansen S. H., Halling-Sørensen B. ( 2004). Isolation, structural elucidation and in vitro activity of 2-acetyl-2-decarboxamido-oxytetracycline against environmental relevant bacteria, including tetracycline-resistant bacteria. J Pharm Biomed Anal 34:559–567 [View Article][PubMed]
    [Google Scholar]
  22. Martell M. J. Jr, Boothe J. H. ( 1967). The 6-deoxytetracyclines. VII. Alkylated aminotetracyclines possessing unique antibacterial activity. J Med Chem 10:44–46 [View Article][PubMed]
    [Google Scholar]
  23. Marti T., Hu Z. H., Pohl N. L., Shah A. N., Khosla C. ( 2000). Cloning, nucleotide sequence, and heterologous expression of the biosynthetic gene cluster for R1128, a non-steroidal estrogen receptor antagonist. Insights into an unusual priming mechanism. J Biol Chem 275:33443–33448 [View Article][PubMed]
    [Google Scholar]
  24. Martin R., Sterner O., Alvarez M. A., de Clercq E., Bailey J. E., Minas W. ( 2001). Collinone, a new recombinant angular polyketide antibiotic made by an engineered Streptomyces strain. J Antibiot (Tokyo) 54:239–249[PubMed] [CrossRef]
    [Google Scholar]
  25. McDowall K. J., Doyle D., Butler M. J., Binnie C., Warren M., Hunter I. S. ( 1991). Molecular genetics of oxytetracycline production by Streptomyces rimosus . Genetics and Product Formation in Streptomyces105–116 Baumberg H. K. G. S., Noack D. New York: Plenum Press; [CrossRef]
    [Google Scholar]
  26. Milman H. A., Cooney D. A. ( 1979). Partial purification and properties of l-asparagine synthetase from mouse pancreas. Biochem J 181:51–59[PubMed]
    [Google Scholar]
  27. Paget M. S. B., Chamberlin L., Atrih A., Foster S. J., Buttner M. J. ( 1999). Evidence that the extracytoplasmic function sigma factor sigmaE is required for normal cell wall structure in Streptomyces coelicolor A3(2). J Bacteriol 181:204–211[PubMed]
    [Google Scholar]
  28. Pickens L. B., Kim W., Wang P., Zhou H., Watanabe K., Gomi S., Tang Y. ( 2009). Biochemical analysis of the biosynthetic pathway of an anticancer tetracycline SF2575. J Am Chem Soc 131:17677–17689 [View Article][PubMed]
    [Google Scholar]
  29. Piel J., Hertweck C., Shipley P. R., Hunt D. M., Newman M. S., Moore B. S. ( 2000). Cloning, sequencing and analysis of the enterocin biosynthesis gene cluster from the marine isolate ‘Streptomyces maritimus’: evidence for the derailment of an aromatic polyketide synthase. Chem Biol 7:943–955 [View Article][PubMed]
    [Google Scholar]
  30. Richards N. G. J., Schuster S. M. ( 1998). Mechanistic issues in asparagine synthetase catalysis. Advances in Enzymology vol. 72145–198 Punch D. L. New York: Wiley;
    [Google Scholar]
  31. Ryan M. J., Lotvin J. A., Strathy N., Fantini S. E. ( 1996). Cloning of the biosynthetic pathway for chlortetracycline and tetracycline formation and cosmids useful therein.
  32. Serre L., Verbree E. C., Dauter Z., Stuitje A. R., Derewenda Z. S. ( 1995). The Escherichia coli malonyl-CoA : acyl carrier protein transacylase at 1.5-Å resolution. Crystal structure of a fatty acid synthase component. J Biol Chem 270:12961–12964[PubMed] [CrossRef]
    [Google Scholar]
  33. Sum P. E., Lee V. J., Testa R. T., Hlavka J. J., Ellestad G. A., Bloom J. D., Gluzman Y., Tally F. P. ( 1994). Glycylcyclines. 1. A new generation of potent antibacterial agents through modification of 9-aminotetracyclines. J Med Chem 37:184–188 [View Article][PubMed]
    [Google Scholar]
  34. Tang Y., Koppisch A. T., Khosla C. ( 2004). The acyltransferase homologue from the initiation module of the R1128 polyketide synthase is an acyl-ACP thioesterase that edits acetyl primer units. Biochemistry 43:9546–9555 [View Article][PubMed]
    [Google Scholar]
  35. Tanner F. W. Jr, Gales F., Hochstein F. A., Kotaro M. ( 1962). Antibiotics and processes.
  36. Thomas R., Williams D. J. ( 1983). Oxytetracycline biosynthesis – origin of the carboxamide substituent. J Chem Soc Chem Commun12677–679 [View Article]
    [Google Scholar]
  37. Wendt-Pienkowski E., Huang Y., Zhang J., Li B. S., Jiang H., Kwon H. J., Hutchinson C. R., Shen B. ( 2005). Cloning, sequencing, analysis, and heterologous expression of the fredericamycin biosynthetic gene cluster from Streptomyces griseus . J Am Chem Soc 127:16442–16452 [View Article][PubMed]
    [Google Scholar]
  38. Ye J. S., Dickens M. L., Plater R., Li Y., Lawrence J., Strohl W. R. ( 1994). Isolation and sequence analysis of polyketide synthase genes from the daunomycin-producing Streptomyces sp. strain C5. J Bacteriol 176:6270–6280[PubMed]
    [Google Scholar]
  39. Zaleta-Rivera K., Charkoudian L. K., Ridley C. P., Khosla C. ( 2010). Cloning, sequencing, heterologous expression, and mechanistic analysis of A-74528 biosynthesis. J Am Chem Soc 132:9122–9128 [View Article][PubMed]
    [Google Scholar]
  40. Zhan J. X., Qiao K. J., Tang Y. ( 2009). Investigation of tailoring modifications in pradimicin biosynthesis. ChemBioChem 10:1447–1452 [View Article][PubMed]
    [Google Scholar]
  41. Zhang W., Ames B. D., Tsai S. C., Tang Y. ( 2006). Engineered biosynthesis of a novel amidated polyketide, using the malonamyl-specific initiation module from the oxytetracycline polyketide synthase. Appl Environ Microbiol 72:2573–2580 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.048439-0
Loading
/content/journal/micro/10.1099/mic.0.048439-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error