1887

Abstract

Ribonucleoside diphosphate reductase (RNR) is located in discrete foci in a number that increases with the overlapping of replication cycles in . Comparison of the numbers of RNR, DnaX and SeqA protein foci with the number of replication forks at different growth rates reveals that fork : focus ratios augment with increasing growth rates, suggesting a higher cohesion of the three protein foci with increasing number of forks per cell. Quantification of NrdB and SeqA proteins per cell showed: (i) a higher amount of RNR per focus at faster growth rates, which sustains the higher cohesion of RNR foci with higher numbers of forks per cell; and (ii) an equivalent amount of RNR per replication fork, independent of the number of the latter.

Funding
This study was supported by the:
  • J. Extremadura (Award PRI07A001)
  • MEC (Spain) (Award BFU2007-63942)
  • J. Extremadura
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.049478-0
2011-08-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/8/2220.html?itemId=/content/journal/micro/10.1099/mic.0.049478-0&mimeType=html&fmt=ahah

References

  1. Adachi S., Fukushima T., Hiraga S. ( 2008). Dynamic events of sister chromosomes in the cell cycle of Escherichia coli . Genes Cells 13:181–197 [View Article][PubMed]
    [Google Scholar]
  2. Bates D., Kleckner N. ( 2005). Chromosome and replisome dynamics in E. coli: loss of sister cohesion triggers global chromosome movement and mediates chromosome segregation. Cell 121:899–911 [View Article][PubMed]
    [Google Scholar]
  3. Brendler T., Sawitzke J., Sergueev K., Austin S. ( 2000). A case for sliding SeqA tracts at anchored replication forks during Escherichia coli chromosome replication and segregation. EMBO J 19:6249–6258 [View Article][PubMed]
    [Google Scholar]
  4. Cooper S., Helmstetter C. E. ( 1968). Chromosome replication and the division cycle of Escherichia coli B/r. J Mol Biol 31:519–540 [View Article][PubMed]
    [Google Scholar]
  5. den Blaauwen T., Aarsman M. E. G., Wheeler L. J., Nanninga N. ( 2006). Pre-replication assembly of E. coli replisome components. Mol Microbiol 62:695–708 [View Article][PubMed]
    [Google Scholar]
  6. Dingman C. W., Fisher M. P., Ishizawa M. ( 1974). DNA replication in Escherichia coli: physical and kinetic studies of the replication point. J Mol Biol 84:275–295 [View Article][PubMed]
    [Google Scholar]
  7. Fossum S., Crooke E., Skarstad K. ( 2007). Organization of sister origins and replisomes during multifork DNA replication in Escherichia coli . EMBO J 26:4514–4522 [View Article][PubMed]
    [Google Scholar]
  8. Guzmán E. C., Caballero J. L., Jiménez-Sánchez A. ( 2002). Ribonucleoside diphosphate reductase is a component of the replication hyperstructure in Escherichia coli . Mol Microbiol 43:487–495 [View Article][PubMed]
    [Google Scholar]
  9. Hiraga S., Ichinose C., Niki H., Yamazoe M. ( 1998). Cell cycle-dependent duplication and bidirectional migration of SeqA-associated DNA–protein complexes in E. coli . Mol Cell 1:381–387 [View Article][PubMed]
    [Google Scholar]
  10. Jiménez-Sánchez A., Guzmán E. C. ( 1988). Direct procedure for the determination of the number of replication forks and the reinitiation fraction in bacteria. Comput Appl Biosci 4:431–433[PubMed]
    [Google Scholar]
  11. Mathews C. K., Wheeler L. J., Ungermann C., Young J. P., Ray N. B. ( 1993). Enzyme interactions involving T4 phage-coded thymidylate synthase and deoxycytidylate hydroxymethylase. Adv Exp Med Biol 338:563–570[PubMed]
    [Google Scholar]
  12. Molina F., Skarstad K. ( 2004). Replication fork and SeqA focus distributions in Escherichia coli suggest a replication hyperstructure dependent on nucleotide metabolism. Mol Microbiol 52:1597–1612 [View Article][PubMed]
    [Google Scholar]
  13. Molina F., Sánchez-Romero M. A., Jiménez-Sánchez A. ( 2008). Dynamic organization of replication forks into factories in Escherichia coli . Process Biochem 43:11711177 [View Article]
    [Google Scholar]
  14. Morigen O., Odsbu I., Skarstad K. ( 2009). Growth rate dependent numbers of SeqA structures organize the multiple replication forks in rapidly growing Escherichia coli . Genes Cells 14:643–657 [View Article][PubMed]
    [Google Scholar]
  15. Norris V., den Blaauwen T., Doi R. H., Harshey R. M., Janniere L., Jiménez-Sánchez A., Jin D. J., Levin P. A., Mileykovskaya E. et al. ( 2007). Toward a hyperstructure taxonomy. Annu Rev Microbiol 61:309–329 [View Article][PubMed]
    [Google Scholar]
  16. Ohsumi K., Yamazoe M., Hiraga S. ( 2001). Different localization of SeqA-bound nascent DNA clusters and MukF–MukE–MukB complex in Escherichia coli cells. Mol Microbiol 40:835–845 [View Article][PubMed]
    [Google Scholar]
  17. Reyes-Lamothe R., Sherratt D. J., Leake M. C. ( 2010). Stoichiometry and architecture of active DNA replication machinery in Escherichia coli . Science 328:498–501 [View Article][PubMed]
    [Google Scholar]
  18. Sánchez-Romero M. A., Busby S. J., Dyer N. P., Ott S., Millard A. D., Grainger D. C. ( 2010a). Dynamic distribution of SeqA protein across the chromosome of Escherichia coli K-12. MBio 1:e00012-10 [View Article][PubMed]
    [Google Scholar]
  19. Sánchez-Romero M. A., Molina F., Jiménez-Sánchez A. ( 2010b). Correlation between ribonucleoside-diphosphate reductase and three replication proteins in Escherichia coli . BMC Mol Biol 11:11 [View Article][PubMed]
    [Google Scholar]
  20. Sunako Y., Onogi T., Hiraga S. ( 2001). Sister chromosome cohesion of Escherichia coli . Mol Microbiol 42:1233–1241 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.049478-0
Loading
/content/journal/micro/10.1099/mic.0.049478-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error