1887

Abstract

By the analysis of the ATCC7966 genome we identified AH-3 MotY. MotY, like MotX, is essential for the polar flagellum function energized by an electrochemical potential of Na as coupling ion, but is not involved in lateral flagella function energized by the proton motive force. Thus, the polar flagellum stator is a complex integrated by two essential proteins, MotX and MotY, which interact with one of two redundant pairs of proteins, PomAB and PomAB. In an mutant, polar flagellum motility is restored by complementation, but the ability of the mutant to swim is not restored by introduction of the wild-type alone. However, its polar flagellum motility is restored when and are expressed together from the same plasmid promoter. Finally, even though both the redundant polar flagellum stators, PomAB and PomAB, are energized by the Na ion, they cannot be exchanged. Furthermore, PomAB and MotAB or MotCD are unable to restore swimming motility in polar flagellum stator mutants.

Funding
This study was supported by the:
  • Plan Nacional de I+D
  • Ministerio de Educación, Ciencia y Deporte
  • Ministerio de Sanidad
  • Generalitat de Catalunya (Centre de Referència en Biotecnologia
  • Ministerio de Educación, Ciencia y Deporte
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.049544-0
2011-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/10/2772.html?itemId=/content/journal/micro/10.1099/mic.0.049544-0&mimeType=html&fmt=ahah

References

  1. Allen L. N., Hanson R. S. ( 1985). Construction of broad-host-range cosmid cloning vectors: identification of genes necessary for growth of Methylobacterium organophilum on methanol. J Bacteriol 161:955–962[PubMed]
    [Google Scholar]
  2. Altarriba M., Merino S., Gavín R., Canals R., Rabaan A., Shaw J. G., Tomás J. M. ( 2003). A polar flagella operon (flg) of Aeromonas hydrophila contains genes required for lateral flagella expression. Microb Pathog 34:249–259 [View Article][PubMed]
    [Google Scholar]
  3. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. ( 1997). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [View Article][PubMed]
    [Google Scholar]
  4. Asai Y., Kojima S., Kato H., Nishioka N., Kawagishi I., Homma M. ( 1997). Putative channel components for the fast-rotating sodium-driven flagellar motor of a marine bacterium. J Bacteriol 179:5104–5110[PubMed]
    [Google Scholar]
  5. Asai Y., Yakushi T., Kawagishi I., Homma M. ( 2003). Ion-coupling determinants of Na+-driven and H+-driven flagellar motors. J Mol Biol 327:453–463 [View Article][PubMed]
    [Google Scholar]
  6. Bateman A., Birney E., Cerruti L., Durbin R., Etwiller L., Eddy S. R., Griffiths-Jones S., Howe K. L., Marshall M., Sonnhammer E. L. L. ( 2002). The Pfam protein families database. Nucleic Acids Res 30:276–280 [View Article][PubMed]
    [Google Scholar]
  7. Berg H. C. ( 2003). The rotary motor of bacterial flagella. Annu Rev Biochem 72:19–54 [View Article][PubMed]
    [Google Scholar]
  8. Blair D. F. ( 2003). Flagellar movement driven by proton translocation. FEBS Lett 545:86–95 [View Article][PubMed]
    [Google Scholar]
  9. Blair D. F., Berg H. C. ( 1990). The MotA protein of E. coli is a proton-conducting component of the flagellar motor. Cell 60:439–449 [View Article][PubMed]
    [Google Scholar]
  10. Canals R., Ramirez S., Vilches S., Horsburgh G., Shaw J. G., Tomás J. M., Merino S. ( 2006a). Polar flagellum biogenesis in Aeromonas hydrophila. . J Bacteriol 188:542–555 [View Article][PubMed]
    [Google Scholar]
  11. Canals R., Altarriba M., Vilches S., Horsburgh G., Shaw J. G., Tomás J. M., Merino S. ( 2006b). Analysis of the lateral flagellar gene system of Aeromonas hydrophila AH-3. J Bacteriol 188:852–862 [View Article][PubMed]
    [Google Scholar]
  12. De Mot R., Vanderleyden J. ( 1994). The C-terminal sequence conservation between OmpA-related outer membrane proteins and MotB suggests a common function in both Gram-positive and Gram-negative bacteria, possibly in the interaction of these domains with peptidoglycan. Mol Microbiol 12:333–334 [View Article][PubMed]
    [Google Scholar]
  13. Doyle T. B., Hawkins A. C., McCarter L. L. ( 2004). The complex flagellar torque generator of Pseudomonas aeruginosa. . J Bacteriol 186:6341–6350 [View Article][PubMed]
    [Google Scholar]
  14. Guzman L. M., Belin D., Carson M. J., Beckwith J. ( 1995). Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177:4121–4130[PubMed]
    [Google Scholar]
  15. Hanahan D. ( 1983). Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580 [View Article][PubMed]
    [Google Scholar]
  16. Ito M., Hicks D. B., Henkin T. M., Guffanti A. A., Powers B. D., Zvi L., Uematsu K., Krulwich T. A. ( 2004). MotPS is the stator-force generator for motility of alkaliphilic Bacillus, and its homologue is a second functional Mot in Bacillus subtilis. . Mol Microbiol 53:1035–1049 [View Article][PubMed]
    [Google Scholar]
  17. Janda J. M., Abbott S. L. ( 2010). The genus Aeromonas: taxonomy, pathogenicity, and infection. Clin Microbiol Rev 23:35–73 [View Article][PubMed]
    [Google Scholar]
  18. Jimenez N., Lacasta A., Vilches S., Reyes M., Vazquez J., Aquillini E., Merino S., Regué M., Tomás J. M. ( 2009). Genetics and proteomics of Aeromonas salmonicida lipopolysaccharide core biosynthesis. J Bacteriol 191:2228–2236 [View Article][PubMed]
    [Google Scholar]
  19. Koerdt A., Paulick A., Mock M., Jost K., Thormann K. M. ( 2009). MotX and MotY are required for flagellar rotation in Shewanella oneidensis MR-1. J Bacteriol 191:5085–5093 [View Article][PubMed]
    [Google Scholar]
  20. Kojima S., Blair D. F. ( 2004). Solubilization and purification of the MotA/MotB complex of Escherichia coli. . Biochemistry 43:26–34 [View Article][PubMed]
    [Google Scholar]
  21. Kojima S., Shinohara A., Terashima H., Yakushi T., Sakuma M., Homma M., Namba K., Imada K. ( 2008). Insights into the stator assembly of the Vibrio flagellar motor from the crystal structure of MotY. Proc Natl Acad Sci U S A 105:7696–7701 [View Article][PubMed]
    [Google Scholar]
  22. MacNab R. ( 1996). Flagella and motility. Escherichia coli and Salmonella123–145 Neidhardt F. C. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  23. McCarter L. L. ( 1994). MotY, a component of the sodium-type flagellar motor. J Bacteriol 176:4219–4225[PubMed]
    [Google Scholar]
  24. McCarter L. L. ( 2001). Polar flagellar motility of the Vibrionaceae . Microbiol Mol Biol Rev 65:445–462 [View Article][PubMed]
    [Google Scholar]
  25. Merino S., Camprubí S., Tomás J. M. ( 1991). The role of lipopolysaccharide in complement-killing of Aeromonas hydrophila strains of serotype O : 34. J Gen Microbiol 137:1583–1590[PubMed] [CrossRef]
    [Google Scholar]
  26. Okabe M., Yakushi T., Asai Y., Homma M. ( 2001). Cloning and characterization of motX, a Vibrio alginolyticus sodium-driven flagellar motor gene. J Biochem 130:879–884[PubMed] [CrossRef]
    [Google Scholar]
  27. Okabe M., Yakushi T., Kojima M., Homma M. ( 2002). MotX and MotY, specific components of the sodium-driven flagellar motor, colocalize to the outer membrane in Vibrio alginolyticus. . Mol Microbiol 46:125–134 [View Article][PubMed]
    [Google Scholar]
  28. Okabe M., Yakushi T., Homma M. ( 2005). Interactions of MotX with MotY and with the PomA/PomB sodium ion channel complex of the Vibrio alginolyticus polar flagellum. J Biol Chem 280:25659–25664 [View Article][PubMed]
    [Google Scholar]
  29. Paulick A., Koerdt A., Lassak J., Huntley S., Wilms I., Narberhaus F., Thormann K. M. ( 2009). Two different stator systems drive a single polar flagellum in Shewanella oneidensis MR-1. Mol Microbiol 71:836–850 [View Article][PubMed]
    [Google Scholar]
  30. Rubirés X., Saigi F., Piqué N., Climent N., Merino S., Albertí S., Tomás J. M., Regué M. ( 1997). A gene (wbbL) from Serratia marcescens N28b (O4) complements the rfb-50 mutation of Escherichia coli K-12 derivatives. J Bacteriol 179:7581–7586[PubMed]
    [Google Scholar]
  31. Sambrook J., Fritsch E. F., Maniatis T. ( 1989). Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  32. Sanger F., Nicklen S., Coulson A. R. ( 1977). DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467 [View Article][PubMed]
    [Google Scholar]
  33. Seshadri R., Joseph S. W., Chopra A. K., Sha J., Shaw J. G., Graf J., Haft D., Wu M., Ren Q. et al. ( 2006). Genome sequence of Aeromonas hydrophila ATCC 7966T: jack of all trades. J Bacteriol 188:8272–8282 [View Article][PubMed]
    [Google Scholar]
  34. Stewart B. J., McCarter L. L. ( 2003). Lateral flagellar gene system of Vibrio parahaemolyticus. . J Bacteriol 185:4508–4518 [View Article][PubMed]
    [Google Scholar]
  35. Stolz B., Berg H. C. ( 1991). Evidence for interactions between MotA and MotB, torque-generating elements of the flagellar motor of Escherichia coli. . J Bacteriol 173:7033–7037[PubMed]
    [Google Scholar]
  36. Terashima H., Fukuoka H., Yakushi T., Kojima S., Homma M. ( 2006). The Vibrio motor proteins, MotX and MotY, are associated with the basal body of Na-driven flagella and required for stator formation. Mol Microbiol 62:1170–1180 [View Article][PubMed]
    [Google Scholar]
  37. Toutain C. M., Zegans M. E., O’Toole G. A. ( 2005). Evidence for two flagellar stators and their role in the motility of Pseudomonas aeruginosa. . J Bacteriol 187:771–777 [View Article][PubMed]
    [Google Scholar]
  38. Wilhelms M., Vilches S., Molero R., Shaw J. G., Tomás J. M., Merino S. ( 2009). Two redundant sodium-driven stator motor proteins are involved in Aeromonas hydrophila polar flagellum rotation. J Bacteriol 191:2206–2217 [View Article][PubMed]
    [Google Scholar]
  39. Yagasaki J., Okabe M., Kurebayashi R., Yakushi T., Homma M. ( 2006). Roles of the intramolecular disulfide bridge in MotX and MotY, the specific proteins for sodium-driven motors in Vibrio spp.. J Bacteriol 188:5308–5314 [View Article][PubMed]
    [Google Scholar]
  40. Yakushi T., Maki S., Homma M. ( 2004). Interaction of PomB with the third transmembrane segment of PomA in the Na+-driven polar flagellum of Vibrio alginolyticus. . J Bacteriol 186:5281–5291 [View Article][PubMed]
    [Google Scholar]
  41. Yorimitsu T., Homma M. ( 2001). Na+-driven flagellar motor of Vibrio. . Biochim Biophys Acta 1505:82–93 [View Article][PubMed]
    [Google Scholar]
  42. Yu H. B., Rao P. S., Lee H. C., Vilches S., Merino S., Tomas J. M., Leung K. Y. ( 2004). A type III secretion system is required for Aeromonas hydrophila AH-1 pathogenesis. Infect Immun 72:1248–1256 [View Article][PubMed]
    [Google Scholar]
  43. Zhou J. D., Fazzio R. T., Blair D. F. ( 1995). Membrane topology of the MotA protein of Escherichia coli. . J Mol Biol 251:237–242 [View Article][PubMed]
    [Google Scholar]
  44. Zhou J., Lloyd S. A., Blair D. F. ( 1998). Electrostatic interactions between rotor and stator in the bacterial flagellar motor. Proc Natl Acad Sci U S A 95:6436–6441 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.049544-0
Loading
/content/journal/micro/10.1099/mic.0.049544-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error