1887

Abstract

an obligate intracellular bacterium, is a highly prevalent human pathogen. Hydroxamic-acid-based matrix metalloprotease inhibitors can effectively inhibit the pathogen both and , and have exhibited therapeutic potential. Here, we provide genome sequencing data indicating that peptide deformylase (PDF) is the sole target of the inhibitors in this organism. We further report molecular mechanisms that control chlamydial PDF (cPDF) expression and inhibition efficiency. In particular, we identify the σ-dependent promoter that controls cPDF gene expression and demonstrate that point mutations in this promoter lead to resistance by increasing cPDF transcription. Furthermore, we show that substitution of two amino acids near the active site of the enzyme alters enzyme kinetics and protein stability.

Funding
This study was supported by the:
  • National Institutes of Health (Award AI071954)
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.049668-0
2011-09-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/9/2569.html?itemId=/content/journal/micro/10.1099/mic.0.049668-0&mimeType=html&fmt=ahah

References

  1. Akers J. C., Tan M. ( 2006). Molecular mechanism of tryptophan-dependent transcriptional regulation in Chlamydia trachomatis. J Bacteriol 188:4236–4243 [View Article][PubMed]
    [Google Scholar]
  2. Amero C. D., Byerly D. W., McElroy C. A., Simmons A., Foster M. P. ( 2009). Ligand-induced changes in the structure and dynamics of Escherichia coli peptide deformylase. Biochemistry 48:7595–7607 [View Article][PubMed]
    [Google Scholar]
  3. Apfel C., Banner D. W., Bur D., Dietz M., Hirata T., Hubschwerlen C., Locher H., Page M. G., Pirson W. et al. ( 2000). Hydroxamic acid derivatives as potent peptide deformylase inhibitors and antibacterial agents. J Med Chem 43:2324–2331 [View Article][PubMed]
    [Google Scholar]
  4. Balakrishnan A., Patel B., Sieber S. A., Chen D., Pachikara N., Zhong G., Cravatt B. F., Fan H. ( 2006). Metalloprotease inhibitors GM6001 and TAPI-0 inhibit the obligate intracellular human pathogen Chlamydia trachomatis by targeting peptide deformylase of the bacterium. J Biol Chem 281:16691–16699 [View Article][PubMed]
    [Google Scholar]
  5. Balakrishnan A., Wang L., Li X., Ohman-Strickland P., Malatesta P., Fan H. ( 2009). Inhibition of chlamydial infection in the genital tract of female mice by topical application of a peptide deformylase inhibitor. Microbiol Res 164:338–346 [View Article][PubMed]
    [Google Scholar]
  6. Bennett S. ( 2004). Solexa Ltd. Pharmacogenomics 5:433–438 [View Article][PubMed]
    [Google Scholar]
  7. Caldwell H. D., Kromhout J., Schachter J. ( 1981). Purification and partial characterization of the major outer membrane protein of Chlamydia trachomatis. Infect Immun 31:1161–1176[PubMed]
    [Google Scholar]
  8. Capecchi M. R. ( 1966). Initiation of E. coli proteins. Proc Natl Acad Sci U S A 55:1517–1524 [View Article][PubMed]
    [Google Scholar]
  9. Chen H., Tang H., Ebright R. H. ( 2003). Functional interaction between RNA polymerase α subunit C-terminal domain and σ70 in UP-element- and activator-dependent transcription. Mol Cell 11:1621–1633 [View Article][PubMed]
    [Google Scholar]
  10. Datsenko K. A., Wanner B. L. ( 2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645 [View Article][PubMed]
    [Google Scholar]
  11. Dean C. R., Narayan S., Richards J., Daigle D. M., Esterow S., Leeds J. A., Kamp H., Puyang X., Wiedmann B. et al. ( 2007). Reduced susceptibility of Haemophilus influenzae to the peptide deformylase inhibitor LBM415 can result from target protein overexpression due to amplified chromosomal def gene copy number. Antimicrob Agents Chemother 51:1004–1010 [View Article][PubMed]
    [Google Scholar]
  12. Greene W., Xiao Y., Huang Y., McClarty G., Zhong G. ( 2004). Chlamydia-infected cells continue to undergo mitosis and resist induction of apoptosis. Infect Immun 72:451–460 [View Article][PubMed]
    [Google Scholar]
  13. Groche D., Becker A., Schlichting I., Kabsch W., Schultz S., Wagner A. F. ( 1998). Isolation and crystallization of functionally competent Escherichia coli peptide deformylase forms containing either iron or nickel in the active site. Biochem Biophys Res Commun 246:342–346 [View Article][PubMed]
    [Google Scholar]
  14. Guilloteau J. P., Mathieu M., Giglione C., Blanc V., Dupuy A., Chevrier M., Gil P., Famechon A., Meinnel T., Mikol V. ( 2002). The crystal structures of four peptide deformylases bound to the antibiotic actinonin reveal two distinct types: a platform for the structure-based design of antibacterial agents. J Mol Biol 320:951–962 [View Article][PubMed]
    [Google Scholar]
  15. Haugen S. P., Ross W., Gourse R. L. ( 2008). Advances in bacterial promoter recognition and its control by factors that do not bind DNA. Nat Rev Microbiol 6:507–519 [View Article][PubMed]
    [Google Scholar]
  16. Hefty P. S., Stephens R. S. ( 2007). Chlamydial type III secretion system is encoded on ten operons preceded by sigma 70-like promoter elements. J Bacteriol 189:198–206 [View Article][PubMed]
    [Google Scholar]
  17. Koehler J. E., Burgess R. R., Thompson N. E., Stephens R. S. ( 1990). Chlamydia trachomatis RNA polymerase major σ subunit. Sequence and structural comparison of conserved and unique regions with Escherichia coli σ70 and Bacillus subtilis σ43. J Biol Chem 265:13206–13214[PubMed]
    [Google Scholar]
  18. Mazel D., Pochet S., Marlière P. ( 1994). Genetic characterization of polypeptide deformylase, a distinctive enzyme of eubacterial translation. EMBO J 13:914–923[PubMed]
    [Google Scholar]
  19. Moulder J. W. ( 1991). Interaction of chlamydiae and host cells in vitro. Microbiol Rev 55:143–190[PubMed]
    [Google Scholar]
  20. Nguyen K. T., Wu J. C., Boylan J. A., Gherardini F. C., Pei D. ( 2007). Zinc is the metal cofactor of Borrelia burgdorferi peptide deformylase. Arch Biochem Biophys 468:217–225 [View Article][PubMed]
    [Google Scholar]
  21. Oey C. B., Bao X., Lewis C., Kerrigan J. E., Fan H. ( 2011). High tolerance to mutations in a Chlamydia trachomatis peptide deformylase loop. World J Biol Chem 2:90–97 [View Article][PubMed]
    [Google Scholar]
  22. Rajagopalan P. T. R., Yu X. C., Pei D. ( 1997). Peptide deformylase: a new type of mononuclear iron protein. J Am Chem Soc 119:12418–12419 [View Article]
    [Google Scholar]
  23. Roshick C., Iliffe-Lee E. R., McClarty G. ( 2000). Cloning and characterization of ribonucleotide reductase from Chlamydia trachomatis. J Biol Chem 275:38111–38119 [View Article][PubMed]
    [Google Scholar]
  24. Ross W., Aiyar S. E., Salomon J., Gourse R. L. ( 1998). Escherichia coli promoters with UP elements of different strengths: modular structure of bacterial promoters. J Bacteriol 180:5375–5383[PubMed]
    [Google Scholar]
  25. Schachter J. ( 1999). Infection and disease epidemiology. Chlamydia Intracellular Biology139–169 Stephens R. S. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  26. Schaumburg C. S., Tan M. ( 2003). Mutational analysis of the Chlamydia trachomatis dnaK promoter defines the optimal −35 promoter element. Nucleic Acids Res 31:551–555 [View Article][PubMed]
    [Google Scholar]
  27. Shen L., Shi Y., Douglas A. L., Hatch T. P., O'Connell C. M., Chen J. M., Zhang Y. X. ( 2000). Identification and characterization of promoters regulating tuf expression in Chlamydia trachomatis serovar F. Arch Biochem Biophys 379:46–56 [View Article][PubMed]
    [Google Scholar]
  28. Stamm W. E., Handsfield H. H., Rompalo A. M., Ashley R. L., Roberts P. L., Corey L. ( 1988). The association between genital ulcer disease and acquisition of HIV infection in homosexual men. JAMA 260:1429–1433 [View Article][PubMed]
    [Google Scholar]
  29. Stephens R. S., Kalman S., Lammel C., Fan J., Marathe R., Aravind L., Mitchell W., Olinger L., Tatusov R. L. et al. ( 1998). Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282:754–759 [View Article][PubMed]
    [Google Scholar]
  30. Tan M. ( 2007). Regulation of gene expression. Chlamydia Genomics and Pathogenesis103–131 Bavoil P., Wyrick P. Wymondham, Norfolk, UK: Horizon Bioscience;
    [Google Scholar]
  31. Tan M., Engel J. N. ( 1996). Identification of sequences necessary for transcription in vitro from the Chlamydia trachomatis rRNA P1 promoter. J Bacteriol 178:6975–6982[PubMed]
    [Google Scholar]
  32. Tan M., Gaal T., Gourse R. L., Engel J. N. ( 1998). Mutational analysis of the Chlamydia trachomatis rRNA P1 promoter defines four regions important for transcription in vitro. J Bacteriol 180:2359–2366[PubMed]
    [Google Scholar]
  33. Thomson N. R., Holden M. T. G., Carder C., Lennard N., Lockey S. J., Marsh P., Skipp P., O'Connor C. D., Goodhead I. et al. ( 2008). Chlamydia trachomatis: genome sequence analysis of lymphogranuloma venereum isolates. Genome Res 18:161–171 [View Article][PubMed]
    [Google Scholar]
  34. Twist K. A., Husnain S. I., Franke J. D., Jain D., Campbell E. A., Nickels B. E., Thomas M. S., Darst S. A., Westblade L. F. ( 2011). A novel method for the production of in vivo-assembled, recombinant Escherichia coli RNA polymerase lacking the α C-terminal domain. Protein Sci 20:986–995 [View Article][PubMed]
    [Google Scholar]
  35. Wise R., Andrews J. M., Ashby J. ( 2002). In vitro activities of peptide deformylase inhibitors against Gram-positive pathogens. Antimicrob Agents Chemother 46:1117–1118 [View Article][PubMed]
    [Google Scholar]
  36. Xiao Y., Zhong Y., Greene W., Dong F., Zhong G. ( 2004). Chlamydia trachomatis infection inhibits both Bax and Bak activation induced by staurosporine. Infect Immun 72:5470–5474 [View Article][PubMed]
    [Google Scholar]
  37. Yu H. H., Di Russo E. G., Rounds M. A., Tan M. ( 2006). Mutational analysis of the promoter recognized by Chlamydia and Escherichia coli σ28 RNA polymerase. J Bacteriol 188:5524–5531 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.049668-0
Loading
/content/journal/micro/10.1099/mic.0.049668-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error