1887

Abstract

Type IV pili (TFP) are membrane-anchored filaments with a number of important biological functions. In the model organism , TFP act as molecular engines that power social (S) motility through cycles of extension and retraction. TFP filaments consist of several thousand copies of a protein called PilA or pilin. PilA contains an N-terminal α-helix essential for TFP assembly and a C-terminal globular domain important for its activity. The role of the PilA sequence and its structure–function relationship in TFP-dependent S motility remain active areas of research. In this study, we identified an PilA mutant carrying an alanine to valine substitution at position 32 in the α-helix, which produced structurally intact but retraction-defective TFP. Characterization of this mutant and additional single-residue variants at this position in PilA demonstrated the critical role of alanine 32 in PilA stability, TFP assembly and retraction.

Funding
This study was supported by the:
  • National Institutes of Health (NIH) (Award GM54666)
  • NIH (Award 1S10RR23057)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.049684-0
2011-07-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/7/1920.html?itemId=/content/journal/micro/10.1099/mic.0.049684-0&mimeType=html&fmt=ahah

References

  1. Aas F. E., Winther-Larsen H. C., Wolfgang M., Frye S., Løvold C., Roos N., van Putten J. P., Koomey M. ( 2007). Substitutions in the N-terminal alpha helical spine of Neisseria gonorrhoeae pilin affect type IV pilus assembly, dynamics and associated functions. Mol Microbiol 63:69–85 [View Article][PubMed]
    [Google Scholar]
  2. Black W. P., Yang Z. ( 2004). Myxococcus xanthus chemotaxis homologs DifD and DifG negatively regulate fibril polysaccharide production. J Bacteriol 186:1001–1008 [View Article][PubMed]
    [Google Scholar]
  3. Black W. P., Xu Q., Yang Z. ( 2006). Type IV pili function upstream of the Dif chemotaxis pathway in Myxococcus xanthus EPS regulation. Mol Microbiol 61:447–456 [View Article][PubMed]
    [Google Scholar]
  4. Bradley D. E. ( 1980). A function of Pseudomonas aeruginosa PAO polar pili: twitching motility. Can J Microbiol 26:146–154 [View Article][PubMed]
    [Google Scholar]
  5. Campos J. M., Geisselsoder J., Zusman D. R. ( 1978). Isolation of bacteriophage MX4, a generalized transducing phage for Myxococcus xanthus. J Mol Biol 119:167–178 [View Article][PubMed]
    [Google Scholar]
  6. Craig L., Taylor R. K., Pique M. E., Adair B. D., Arvai A. S., Singh M., Lloyd S. J., Shin D. S., Getzoff E. D. et al. ( 2003). Type IV pilin structure and assembly: X-ray and EM analyses of Vibrio cholerae toxin-coregulated pilus and Pseudomonas aeruginosa PAK pilin. Mol Cell 11:1139–1150 [View Article][PubMed]
    [Google Scholar]
  7. Craig L., Pique M. E., Tainer J. A. ( 2004). Type IV pilus structure and bacterial pathogenicity. Nat Rev Microbiol 2:363–378 [View Article][PubMed]
    [Google Scholar]
  8. Craig L., Volkmann N., Arvai A. S., Pique M. E., Yeager M., Egelman E. H., Tainer J. A. ( 2006). Type IV pilus structure by cryo-electron microscopy and crystallography: implications for pilus assembly and functions. Mol Cell 23:651–662 [View Article][PubMed]
    [Google Scholar]
  9. Giltner C. L., van Schaik E. J., Audette G. F., Kao D., Hodges R. S., Hassett D. J., Irvin R. T. ( 2006). The Pseudomonas aeruginosa type IV pilin receptor binding domain functions as an adhesin for both biotic and abiotic surfaces. Mol Microbiol 59:1083–1096 [View Article][PubMed]
    [Google Scholar]
  10. Hagen D. C., Bretscher A. P., Kaiser D. ( 1978). Synergism between morphogenetic mutants of Myxococcus xanthus. Dev Biol 64:284–296 [View Article][PubMed]
    [Google Scholar]
  11. Harlow E., Lane D. ( 1988). Antibodies: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  12. Hazes B., Sastry P. A., Hayakawa K., Read R. J., Irvin R. T. ( 2000). Crystal structure of Pseudomonas aeruginosa PAK pilin suggests a main-chain-dominated mode of receptor binding. J Mol Biol 299:1005–1017 [View Article][PubMed]
    [Google Scholar]
  13. Hodgkin J., Kaiser D. ( 1979). Genetics of gliding motility in Myxococcus xanthus (Myxobacterales): two gene systems control movement. Mol Gen Genet 171:177–191 [View Article]
    [Google Scholar]
  14. Jakovljevic V., Leonardy S., Hoppert M., Søgaard-Andersen L. ( 2008). PilB and PilT are ATPases acting antagonistically in type IV pilus function in Myxococcus xanthus. J Bacteriol 190:2411–2421 [View Article][PubMed]
    [Google Scholar]
  15. Kaiser D. ( 1979). Social gliding is correlated with the presence of pili in Myxococcus xanthus. Proc Natl Acad Sci U S A 76:5952–5956 [View Article][PubMed]
    [Google Scholar]
  16. Kashefi K., Hartzell P. L. ( 1995). Genetic suppression and phenotypic masking of a Myxococcus xanthus frzF defect. Mol Microbiol 15:483–494 [View Article][PubMed]
    [Google Scholar]
  17. Keizer D. W., Slupsky C. M., Kalisiak M., Campbell A. P., Crump M. P., Sastry P. A., Hazes B., Irvin R. T., Sykes B. D. ( 2001). Structure of a pilin monomer from Pseudomonas aeruginosa: implications for the assembly of pili. J Biol Chem 276:24186–24193 [View Article][PubMed]
    [Google Scholar]
  18. Lee K. K., Sheth H. B., Wong W. Y., Sherburne R., Paranchych W., Hodges R. S., Lingwood C. A., Krivan H., Irvin R. T. ( 1994). The binding of Pseudomonas aeruginosa pili to glycosphingolipids is a tip-associated event involving the C-terminal region of the structural pilin subunit. Mol Microbiol 11:705–713 [View Article][PubMed]
    [Google Scholar]
  19. Li Y., Sun H., Ma X., Lu A., Lux R., Zusman D., Shi W. ( 2003). Extracellular polysaccharides mediate pilus retraction during social motility of Myxococcus xanthus. Proc Natl Acad Sci U S A 100:5443–5448 [View Article][PubMed]
    [Google Scholar]
  20. Li Y., Lux R., Pelling A. E., Gimzewski J. K., Shi W. ( 2005). Analysis of type IV pilus and its associated motility in Myxococcus xanthus using an antibody reactive with native pilin and pili. Microbiology 151:353–360 [View Article][PubMed]
    [Google Scholar]
  21. MacNeil S. D., Mouzeyan A., Hartzell P. L. ( 1994). Genes required for both gliding motility and development in Myxococcus xanthus. Mol Microbiol 14:785–795 [View Article][PubMed]
    [Google Scholar]
  22. Mathews C. K., Van Holde K. E., Ahern K. G. ( 2000). Biochemistry, 3rd edn. San Francisco, CA: Benjamin Cummings;
    [Google Scholar]
  23. Nudleman E., Kaiser D. ( 2004). Pulling together with type IV pili. J Mol Microbiol Biotechnol 7:52–62 [View Article][PubMed]
    [Google Scholar]
  24. Parge H. E., Forest K. T., Hickey M. J., Christensen D. A., Getzoff E. D., Tainer J. A. ( 1995). Structure of the fibre-forming protein pilin at 2.6 Å resolution. Nature 378:32–38 [View Article][PubMed]
    [Google Scholar]
  25. Sambrook J., Russell D. W. ( 2001). Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  26. Satyshur K. A., Worzalla G. A., Meyer L. S., Heiniger E. K., Aukema K. G., Misic A. M., Forest K. T. ( 2007). Crystal structures of the pilus retraction motor PilT suggest large domain movements and subunit cooperation drive motility. Structure 15:363–376 [View Article][PubMed]
    [Google Scholar]
  27. Scheuerpflug I., Rudel T., Ryll R., Pandit J., Meyer T. F. ( 1999). Roles of PilC and PilE proteins in pilus-mediated adherence of Neisseria gonorrhoeae and Neisseria meningitidis to human erythrocytes and endothelial and epithelial cells. Infect Immun 67:834–843[PubMed]
    [Google Scholar]
  28. Sheth H. B., Glasier L. M., Ellert N. W., Cachia P., Kohn W., Lee K. K., Paranchych W., Hodges R. S., Irvin R. T. ( 1995). Development of an anti-adhesive vaccine for Pseudomonas aeruginosa targeting the C-terminal region of the pilin structural protein. Biomed Pept Proteins Nucleic Acids 1:141–148[PubMed]
    [Google Scholar]
  29. Shi W., Zusman D. R. ( 1993). The two motility systems of Myxococcus xanthus show different selective advantages on various surfaces. Proc Natl Acad Sci U S A 90:3378–3382 [View Article][PubMed]
    [Google Scholar]
  30. Sun H., Zusman D. R., Shi W. ( 2000). Type IV pilus of Myxococcus xanthus is a motility apparatus controlled by the frz chemosensory system. Curr Biol 10:1143–1146 [View Article][PubMed]
    [Google Scholar]
  31. Wu S. S., Kaiser D. ( 1995). Genetic and functional evidence that type IV pili are required for social gliding motility in Myxococcus xanthus. Mol Microbiol 18:547–558 [View Article][PubMed]
    [Google Scholar]
  32. Wu S. S., Kaiser D. ( 1996). Markerless deletions of pil genes in Myxococcus xanthus generated by counterselection with the Bacillus subtilis sacB gene. J Bacteriol 178:5817–5821[PubMed]
    [Google Scholar]
  33. Wu S. S., Wu J., Kaiser D. ( 1997). The Myxococcus xanthus pilT locus is required for social gliding motility although pili are still produced. Mol Microbiol 23:109–121 [View Article][PubMed]
    [Google Scholar]
  34. Yang Z., Geng Y., Xu D., Kaplan H. B., Shi W. ( 1998). A new set of chemotaxis homologues is essential for Myxococcus xanthus social motility. Mol Microbiol 30:1123–1130 [View Article][PubMed]
    [Google Scholar]
  35. Yang Z., Ma X., Tong L., Kaplan H. B., Shimkets L. J., Shi W. ( 2000). Myxococcus xanthus dif genes are required for biogenesis of cell surface fibrils essential for social gliding motility. J Bacteriol 182:5793–5798 [View Article][PubMed]
    [Google Scholar]
  36. Yang Z., Lux R., Hu W., Hu C., Shi W. ( 2010). PilA localization affects extracellular polysaccharide production and fruiting body formation in Myxococcus xanthus. Mol Microbiol 76:1500–1513 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.049684-0
Loading
/content/journal/micro/10.1099/mic.0.049684-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error