1887

Abstract

The Gram-negative pathogen strain M2 was found to exhibit a robust surface motility on low-percentage (0.2–0.4 %) agar plates. These patterns of motility were dramatically different depending on whether Difco or Eiken agar was used. Motility was observed in many, but not all, clinical and environmental isolates. The use of drop collapse assays to demonstrate surfactant production was unsuccessful, and the role of surfactants in M2 motility remains unclear. Surface motility was impaired by an insertion in , encoding a gene product that is often required for retraction of the type IV pilus. Motility was also dependent on quorum sensing, as a null allele in the autoinducer synthase decreased motility, and the addition of exogenous -(3-hydroxy)-dodecanoylhomoserine lactone (3-OH C-HSL) restored motility to the mutant. Transposon mutagenesis was used to identify additional genes required for motility and revealed loci encoding various functions: non-ribosomal synthesis of a putative lipopeptide, a sensor kinase (BfmS), a lytic transglycosylase, O-antigen biosynthesis (RmlB), an outer membrane porin (OmpA) and purine biosynthesis (PurK). Two of the above genes required for motility were highly activated by quorum sensing, and may explain, in part, the requirement for quorum sensing in motility.

Funding
This study was supported by the:
  • Atlanta Research and Education Foundation
  • National Institutes of Health (Award R01AI072219-01A1))
  • Department of Veterans Affairs
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.049791-0
2011-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/9/2534.html?itemId=/content/journal/micro/10.1099/mic.0.049791-0&mimeType=html&fmt=ahah

References

  1. Adams M. D., Goglin K., Molyneaux N., Hujer K. M., Lavender H., Jamison J. J., MacDonald I. J., Martin K. M., Russo T. et al. ( 2008). Comparative genome sequence analysis of multidrug-resistant Acinetobacter baumannii. J Bacteriol 190:8053–8064 [View Article][PubMed]
    [Google Scholar]
  2. Barker J., Maxted H. ( 1975). Observations on the growth and movement of Acinetobacter on semi-solid media. J Med Microbiol 8:443–446 [View Article][PubMed]
    [Google Scholar]
  3. Bergogne-Bérézin E., Towner K. J. ( 1996). Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin Microbiol Rev 9:148–165[PubMed]
    [Google Scholar]
  4. Bouvet P. J., Grimont P. A. ( 1987). Identification and biotyping of clinical isolates of Acinetobacter. Ann Inst Pasteur Microbiol 138:569–578 [View Article][PubMed]
    [Google Scholar]
  5. Choi C. H., Lee J. S., Lee Y. C., Park T. I., Lee J. C. ( 2008a). Acinetobacter baumannii invades epithelial cells and outer membrane protein A mediates interactions with epithelial cells. BMC Microbiol 8:216 [View Article][PubMed]
    [Google Scholar]
  6. Choi C. H., Hyun S. H., Lee J. Y., Lee J. S., Lee Y. S., Kim S. A., Chae J. P., Yoo S. M., Lee J. C. ( 2008b). Acinetobacter baumannii outer membrane protein A targets the nucleus and induces cytotoxicity. Cell Microbiol 10:309–319[PubMed]
    [Google Scholar]
  7. Farinha M. A., Kropinski A. M. ( 1990). Construction of broad-host-range plasmid vectors for easy visible selection and analysis of promoters. J Bacteriol 172:3496–3499[PubMed]
    [Google Scholar]
  8. Gaddy J. A., Tomaras A. P., Actis L. A. ( 2009). The Acinetobacter baumannii 19606 OmpA protein plays a role in biofilm formation on abiotic surfaces and in the interaction of this pathogen with eukaryotic cells. Infect Immun 77:3150–3160 [View Article][PubMed]
    [Google Scholar]
  9. Gribun A., Nitzan Y., Pechatnikov I., Hershkovits G., Katcoff D. J. ( 2003). Molecular and structural characterization of the HMP-AB gene encoding a pore-forming protein from a clinical isolate of Acinetobacter baumannii. Curr Microbiol 47:434–443 [View Article][PubMed]
    [Google Scholar]
  10. Harshey R. M. ( 2003). Bacterial motility on a surface: many ways to a common goal. Annu Rev Microbiol 57:249–273 [View Article][PubMed]
    [Google Scholar]
  11. Harshey R. M., Matsuyama T. ( 1994). Dimorphic transition in Escherichia coli and Salmonella typhimurium: surface-induced differentiation into hyperflagellate swarmer cells. Proc Natl Acad Sci U S A 91:8631–8635 [View Article][PubMed]
    [Google Scholar]
  12. Henrichsen J. ( 1972). Bacterial surface translocation: a survey and a classification. Bacteriol Rev 36:478–503[PubMed]
    [Google Scholar]
  13. Henrichsen J. ( 1984). Not gliding but twitching motility of Acinetobacter calcoaceticus. J Clin Pathol 37:102–103 [View Article][PubMed]
    [Google Scholar]
  14. Herdendorf T. J., McCaslin D. R., Forest K. T. ( 2002). Aquifex aeolicus PilT, homologue of a surface motility protein, is a thermostable oligomeric NTPase. J Bacteriol 184:6465–6471 [View Article][PubMed]
    [Google Scholar]
  15. Hunger M., Schmucker R., Kishan V., Hillen W. ( 1990). Analysis and nucleotide sequence of an origin of DNA replication in Acinetobacter calcoaceticus and its use for Escherichia coli shuttle plasmids. Gene 87:45–51 [View Article][PubMed]
    [Google Scholar]
  16. Jain D. K., Collins-Thompson D. L., Lee H., Trevors J. T. ( 1991). A drop-collapsing test for screening surfactant-producing microorganisms. J Microbiol Methods 13:271–279 [View Article]
    [Google Scholar]
  17. Jarrell K. F., McBride M. J. ( 2008). The surprisingly diverse ways that prokaryotes move. Nat Rev Microbiol 6:466–476 [View Article][PubMed]
    [Google Scholar]
  18. Kaniga K., Delor I., Cornelis G. R. ( 1991). A wide-host-range suicide vector for improving reverse genetics in Gram-negative bacteria: inactivation of the blaA gene of Yersinia enterocolitica. Gene 109:137–141 [View Article][PubMed]
    [Google Scholar]
  19. Martínez A., Torello S., Kolter R. ( 1999). Sliding motility in mycobacteria. J Bacteriol 181:7331–7338[PubMed]
    [Google Scholar]
  20. Matsuyama T., Bhasin A., Harshey R. M. ( 1995). Mutational analysis of flagellum-independent surface spreading of Serratia marcescens 274 on a low-agar medium. J Bacteriol 177:987–991[PubMed]
    [Google Scholar]
  21. Mattick J. S. ( 2002). Type IV pili and twitching motility. Annu Rev Microbiol 56:289–314 [View Article][PubMed]
    [Google Scholar]
  22. McBride M. J. ( 2010). Shining a light on an opportunistic pathogen. J Bacteriol 192:6325–6326 [View Article][PubMed]
    [Google Scholar]
  23. Merz A. J., So M., Sheetz M. P. ( 2000). Pilus retraction powers bacterial twitching motility. Nature 407:98–102 [View Article][PubMed]
    [Google Scholar]
  24. Mussi M. A., Gaddy J. A., Cabruja M., Arivett B. A., Viale A. M., Rasia R., Actis L. A. ( 2010). The opportunistic human pathogen Acinetobacter baumannii senses and responds to light. J Bacteriol 192:6336–6345 [View Article][PubMed]
    [Google Scholar]
  25. Niu C., Clemmer K. M., Bonomo R. A., Rather P. N. ( 2008). Isolation and characterization of an autoinducer synthase from Acinetobacter baumannii. J Bacteriol 190:3386–3392 [View Article][PubMed]
    [Google Scholar]
  26. Rather P. N. ( 2005). Swarmer cell differentiation in Proteus mirabilis. Environ Microbiol 7:1065–1073 [View Article][PubMed]
    [Google Scholar]
  27. Rosenberg M., Gutnick D., Rosenberg E. ( 1980). Adherence of bacteria to hydrocarbons: a simple method for measuring cell surface hydrophobicity. FEMS Microbiol Lett 9:29–33 [View Article]
    [Google Scholar]
  28. Skerker J. M., Berg H. C. ( 2001). Direct observation of extension and retraction of type IV pili. Proc Natl Acad Sci U S A 98:6901–6904 [View Article][PubMed]
    [Google Scholar]
  29. Smith M. G., Gianoulis T. A., Pukatzki S., Mekalanos J. J., Ornston L. N., Gerstein M., Snyder M. ( 2007). New insights into Acinetobacter baumannii pathogenesis revealed by high-density pyrosequencing and transposon mutagenesis. Genes Dev 21:601–614 [View Article][PubMed]
    [Google Scholar]
  30. Stewart C. R., Rossier O., Cianciotto N. P. ( 2009). Surface translocation by Legionella pneumophila: a form of sliding motility that is dependent upon type II protein secretion. J Bacteriol 191:1537–1546 [View Article][PubMed]
    [Google Scholar]
  31. Toguchi A., Siano M., Burkart M., Harshey R. M. ( 2000). Genetics of swarming motility in Salmonella enterica serovar Typhimurium: critical role for lipopolysaccharide. J Bacteriol 182:6308–6321 [View Article][PubMed]
    [Google Scholar]
  32. Tomaras A. P., Dorsey C. W., Edelmann R. E., Actis L. A. ( 2003). Attachment to and biofilm formation on abiotic surfaces by Acinetobacter baumannii: involvement of a novel chaperone-usher pili assembly system. Microbiology 149:3473–3484 [View Article][PubMed]
    [Google Scholar]
  33. Tomaras A. P., Flagler M. J., Dorsey C. W., Gaddy J. A., Actis L. A. ( 2008). Characterization of a two-component regulatory system from Acinetobacter baumannii that controls biofilm formation and cellular morphology. Microbiology 154:3398–3409 [View Article][PubMed]
    [Google Scholar]
  34. Vollmer W., Joris B., Charlier P., Foster S. ( 2008). Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol Rev 32:259–286 [View Article][PubMed]
    [Google Scholar]
  35. Wall D., Kaiser D. ( 1999). Type IV pili and cell motility. Mol Microbiol 32:1–10 [View Article][PubMed]
    [Google Scholar]
  36. Walzer G., Rosenberg E., Ron E. Z. ( 2006). The Acinetobacter outer membrane protein A (OmpA) is a secreted emulsifier. Environ Microbiol 8:1026–1032 [View Article][PubMed]
    [Google Scholar]
  37. Whiteley M., Lee K. M., Greenberg E. P. ( 1999). Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 96:13904–13909 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.049791-0
Loading
/content/journal/micro/10.1099/mic.0.049791-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error