1887

Abstract

The environmental bacterium survives and replicates in a variety of diverse ecological niches that range from the soil to the cytosol of infected mammalian cells. The ability of to replicate within an infected host requires the expression of a number of secreted bacterial gene products whose expression is regulated by the transcriptional activator PrfA. PrfA becomes activated following bacterial entry into host cells; however, the mechanism by which this activation occurs remains unknown. Here we describe a novel C-terminal mutation that results in the high-level constitutive activation of PrfA and yet, in contrast with other described activation mutations, only modestly increases PrfA DNA binding affinity. strains containing the P219S mutation exhibited high levels of PrfA-dependent virulence gene expression, were hyperinvasive in tissue culture models of infection, were fully motile and were hypervirulent in mice. In contrast with PrfA G145S and other mutationally activated PrfA proteins, the PrfA P219S protein readily formed homodimers and did not exhibit a dramatic increase in its DNA-binding affinity for target promoters. Interestingly, the P219S mutation is located adjacent to the K220 residue that has been previously reported to contribute to PrfA DNA binding activity. P219S therefore appears to constitutively activate PrfA via a novel mechanism which minimally affects PrfA DNA binding .

Funding
This study was supported by the:
  • Public Health Service (Award AI41816)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.049957-0
2011-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/11/3138.html?itemId=/content/journal/micro/10.1099/mic.0.049957-0&mimeType=html&fmt=ahah

References

  1. Alonzo F. III, Port G. C., Cao M., Freitag N. E. ( 2009). The posttranslocation chaperone PrsA2 contributes to multiple facets of Listeria monocytogenes pathogenesis. Infect Immun 77:2612–2623[PubMed] [CrossRef]
    [Google Scholar]
  2. Bitar A. P., Cao M., Marquis H. ( 2008). The metalloprotease of Listeria monocytogenes is activated by intramolecular autocatalysis. J Bacteriol 190:107–111[PubMed] [CrossRef]
    [Google Scholar]
  3. Bruno J. C. Jr, Freitag N. E. ( 2010). Constitutive activation of PrfA tilts the balance of Listeria monocytogenes fitness towards life within the host versus environmental survival. PLoS ONE 5:e15138[PubMed] [CrossRef]
    [Google Scholar]
  4. Camilli A., Paynton C. R., Portnoy D. A. ( 1989). Intracellular methicillin selection of Listeria monocytogenes mutants unable to replicate in a macrophage cell line. Proc Natl Acad Sci U S A 86:5522–5526[PubMed] [CrossRef]
    [Google Scholar]
  5. Camilli A., Tilney L. G., Portnoy D. A. ( 1993). Dual roles of plcA in Listeria monocytogenes pathogenesis. Mol Microbiol 8:143–157[PubMed] [CrossRef]
    [Google Scholar]
  6. Centers for Disease Control and Prevention ( 2004). Preliminary FoodNet data on the incidence of infection with pathogens transmitted commonly through food – selected sites, United States, 2003. MMWR Morb Mortal Wkly Rep 53:338–343[PubMed]
    [Google Scholar]
  7. Cossart P. ( 2007). Listeriology (1926–2007): the rise of a model pathogen. Microbes Infect 9:1143–1146[PubMed] [CrossRef]
    [Google Scholar]
  8. Cossart P., Toledo-Arana A. ( 2008). Listeria monocytogenes, a unique model in infection biology: an overview. Microbes Infect 10:1041–1050[PubMed] [CrossRef]
    [Google Scholar]
  9. Czuprynski C. J. ( 2005). Listeria monocytogenes: silage, sandwiches and science. Anim Health Res Rev 6:211–217[PubMed] [CrossRef]
    [Google Scholar]
  10. Delgado A. R. ( 2008). Listeriosis in pregnancy. J Midwifery Womens Health 53:255–259[PubMed] [CrossRef]
    [Google Scholar]
  11. Drevets D. A., Bronze M. S. ( 2008). Listeria monocytogenes: epidemiology, human disease, and mechanisms of brain invasion. FEMS Immunol Med Microbiol 53:151–165[PubMed] [CrossRef]
    [Google Scholar]
  12. Dussurget O. ( 2008). New insights into determinants of Listeria monocytogenes virulence. Int Rev Cell Mol Biol 270:1–38[PubMed]
    [Google Scholar]
  13. Eiting M., Hagelüken G., Schubert W. D., Heinz D. W. ( 2005). The mutation G145S in PrfA, a key virulence regulator of Listeria monocytogenes, increases DNA-binding affinity by stabilizing the HTH motif. Mol Microbiol 56:433–446[PubMed] [CrossRef]
    [Google Scholar]
  14. Freitag N. E. ( 2006). From hot dogs to host cells: how the bacterial pathogen Listeria monocytogenes regulates virulence gene expression. Future Microbiol 1:89–101[PubMed] [CrossRef]
    [Google Scholar]
  15. Freitag N. E., Portnoy D. A. ( 1994). Dual promoters of the Listeria monocytogenes prfA transcriptional activator appear essential in vitro but are redundant in vivo . Mol Microbiol 12:845–853[PubMed] [CrossRef]
    [Google Scholar]
  16. Freitag N. E., Port G. C., Miner M. D. ( 2009). Listeria monocytogenes – from saprophyte to intracellular pathogen. Nat Rev Microbiol 7:623–628[PubMed] [CrossRef]
    [Google Scholar]
  17. Gandhi M., Chikindas M. L. ( 2007). Listeria: a foodborne pathogen that knows how to survive. Int J Food Microbiol 113:1–15[PubMed] [CrossRef]
    [Google Scholar]
  18. Gray M. J., Freitag N. E., Boor K. J. ( 2006). How the bacterial pathogen Listeria monocytogenes mediates the switch from environmental Dr. Jekyll to pathogenic Mr. Hyde. Infect Immun 74:2505–2512[PubMed] [CrossRef]
    [Google Scholar]
  19. Harman J. G. ( 2001). Allosteric regulation of the cAMP receptor protein. Biochim Biophys Acta 1547:1–17[PubMed] [CrossRef]
    [Google Scholar]
  20. Harman J. G., McKenney K., Peterkofsky A. ( 1986). Structure–function analysis of three cAMP-independent forms of the cAMP receptor protein. J Biol Chem 261:16332–16339[PubMed]
    [Google Scholar]
  21. Herler M., Bubert A., Goetz M., Vega Y., Vazquez-Boland J. A., Goebel W. ( 2001). Positive selection of mutations leading to loss or reduction of transcriptional activity of PrfA, the central regulator of Listeria monocytogenes virulence. J Bacteriol 183:5562–5570[PubMed] [CrossRef]
    [Google Scholar]
  22. Ireton K., Cossart P. ( 1997). Host–pathogen interactions during entry and actin-based movement of Listeria monocytogenes . Annu Rev Genet 31:113–138[PubMed] [CrossRef]
    [Google Scholar]
  23. Joseph B., Goebel W. ( 2007). Life of Listeria monocytogenes in the host cells’ cytosol. Microbes Infect 9:1188–1195[PubMed] [CrossRef]
    [Google Scholar]
  24. Kreft J., Vázquez-Boland J. A., Altrock S., Dominguez-Bernal G., Goebel W. ( 2002). Pathogenicity islands and other virulence elements in Listeria . Curr Top Microbiol Immunol 264:109–125[PubMed]
    [Google Scholar]
  25. Lampidis R., Gross R., Sokolovic Z., Goebel W., Kreft J. ( 1994). The virulence regulator protein of Listeria ivanovii is highly homologous to PrfA from Listeria monocytogenes and both belong to the Crp–Fnr family of transcription regulators. Mol Microbiol 13:141–151[PubMed] [CrossRef]
    [Google Scholar]
  26. Lauer P., Chow M. Y., Loessner M. J., Portnoy D. A., Calendar R. ( 2002). Construction, characterization, and use of two Listeria monocytogenes site-specific phage integration vectors. J Bacteriol 184:4177–4186[PubMed] [CrossRef]
    [Google Scholar]
  27. Lecuit M. ( 2007). Human listeriosis and animal models. Microbes Infect 9:1216–1225[PubMed] [CrossRef]
    [Google Scholar]
  28. Lynch M., Painter J., Woodruff R., Braden C. Centers for Disease Control and Prevention ( 2006). Surveillance for foodborne-disease outbreaks – United States, 1998–2002. MMWR Surveill Summ 55:1–42[PubMed]
    [Google Scholar]
  29. Marquis H., Doshi V., Portnoy D. A. ( 1995). The broad-range phospholipase C and a metalloprotease mediate listeriolysin O-independent escape of Listeria monocytogenes from a primary vacuole in human epithelial cells. Infect Immun 63:4531–4534[PubMed]
    [Google Scholar]
  30. Marr A. K., Joseph B., Mertins S., Ecke R., Müller-Altrock S., Goebel W. ( 2006). Overexpression of PrfA leads to growth inhibition of Listeria monocytogenes in glucose-containing culture media by interfering with glucose uptake. J Bacteriol 188:3887–3901[PubMed] [CrossRef]
    [Google Scholar]
  31. Mead P. S., Dunne E. F., Graves L., Wiedmann M., Patrick M., Hunter S., Salehi E., Mostashari F., Craig A. et al. ( 2006). Nationwide outbreak of listeriosis due to contaminated meat. Epidemiol Infect 134:744–751[PubMed] [CrossRef]
    [Google Scholar]
  32. Mertins S., Joseph B., Goetz M., Ecke R., Seidel G., Sprehe M., Hillen W., Goebel W., Müller-Altrock S. ( 2007). Interference of components of the phosphoenolpyruvate phosphotransferase system with the central virulence gene regulator PrfA of Listeria monocytogenes . J Bacteriol 189:473–490[PubMed] [CrossRef]
    [Google Scholar]
  33. Miner M. D., Port G. C., Bouwer H. G., Chang J. C., Freitag N. E. ( 2008a). A novel prfA mutation that promotes Listeria monocytogenes cytosol entry but reduces bacterial spread and cytotoxicity. Microb Pathog 45:273–281[PubMed] [CrossRef]
    [Google Scholar]
  34. Miner M. D., Port G. C., Freitag N. E. ( 2008b). Functional impact of mutational activation on the Listeria monocytogenes central virulence regulator PrfA. Microbiology 154:3579–3589[PubMed] [CrossRef]
    [Google Scholar]
  35. Mueller K. J., Freitag N. E. ( 2005). Pleiotropic enhancement of bacterial pathogenesis resulting from the constitutive activation of the Listeria monocytogenes regulatory factor PrfA. Infect Immun 73:1917–1926[PubMed] [CrossRef]
    [Google Scholar]
  36. O’Neil H. S., Marquis H. ( 2006). Listeria monocytogenes flagella are used for motility, not as adhesins, to increase host cell invasion. Infect Immun 74:6675–6681[PubMed] [CrossRef]
    [Google Scholar]
  37. Port G. C., Freitag N. E. ( 2007). Identification of novel Listeria monocytogenes secreted virulence factors following mutational activation of the central virulence regulator, PrfA. Infect Immun 75:5886–5897[PubMed] [CrossRef]
    [Google Scholar]
  38. Portnoy D. A., Jacks P. S., Hinrichs D. J. ( 1988). Role of hemolysin for the intracellular growth of Listeria monocytogenes . J Exp Med 167:1459–1471[PubMed] [CrossRef]
    [Google Scholar]
  39. Ramaswamy V., Cresence V. M., Rejitha J. S., Lekshmi M. U., Dharsana K. S., Prasad S. P., Vijila H. M. ( 2007). Listeria – review of epidemiology and pathogenesis. J Microbiol Immunol Infect 40:4–13[PubMed]
    [Google Scholar]
  40. Ripio M. T., Domínguez-Bernal G., Lara M., Suárez M., Vazquez-Boland J. A. ( 1997). A Gly145Ser substitution in the transcriptional activator PrfA causes constitutive overexpression of virulence factors in Listeria monocytogenes . J Bacteriol 179:1533–1540[PubMed]
    [Google Scholar]
  41. Roche S. M., Gracieux P., Albert I., Gouali M., Jacquet C., Martin P. M., Velge P. ( 2003). Experimental validation of low virulence in field strains of Listeria monocytogenes . Infect Immun 71:3429–3436[PubMed] [CrossRef]
    [Google Scholar]
  42. Scortti M., Monzó H. J., Lacharme-Lora L., Lewis D. A., Vázquez-Boland J. A. ( 2007). The PrfA virulence regulon. Microbes Infect 9:1196–1207[PubMed] [CrossRef]
    [Google Scholar]
  43. Shetron-Rama L. M., Marquis H., Bouwer H. G., Freitag N. E. ( 2002). Intracellular induction of Listeria monocytogenes actA expression. Infect Immun 70:1087–1096[PubMed] [CrossRef]
    [Google Scholar]
  44. Shetron-Rama L. M., Mueller K., Bravo J. M., Bouwer H. G., Way S. S., Freitag N. E. ( 2003). Isolation of Listeria monocytogenes mutants with high-level in vitro expression of host cytosol-induced gene products. Mol Microbiol 48:1537–1551[PubMed] [CrossRef]
    [Google Scholar]
  45. Smith M. A., Takeuchi K., Anderson G., Ware G. O., McClure H. M., Raybourne R. B., Mytle N., Doyle M. P. ( 2008). Dose–response model for Listeria monocytogenes-induced stillbirths in nonhuman primates. Infect Immun 76:726–731[PubMed] [CrossRef]
    [Google Scholar]
  46. Smith B., Kemp M., Ethelberg S., Schiellerup P., Bruun B. G., Gerner-Smidt P., Christensen J. J. ( 2009). Listeria monocytogenes: maternal-foetal infections in Denmark 1994–2005. Scand J Infect Dis 41:21–25[PubMed] [CrossRef]
    [Google Scholar]
  47. Sun A. N., Camilli A., Portnoy D. A. ( 1990). Isolation of Listeria monocytogenes small-plaque mutants defective for intracellular growth and cell-to-cell spread. Infect Immun 58:3770–3778[PubMed]
    [Google Scholar]
  48. Swaminathan B., Gerner-Smidt P. ( 2007). The epidemiology of human listeriosis. Microbes Infect 9:1236–1243[PubMed] [CrossRef]
    [Google Scholar]
  49. Swaminathan B., Gerner-Smidt P., Whichard J. M. ( 2006). Foodborne disease trends and reports. Foodborne Pathog Dis 3:316–318[PubMed] [CrossRef]
    [Google Scholar]
  50. Tan G. S., Kelly P., Kim J., Wartell R. M. ( 1991). Comparison of cAMP receptor protein (CRP) and a cAMP-independent form of CRP by Raman spectroscopy and DNA binding. Biochemistry 30:5076–5080[PubMed] [CrossRef]
    [Google Scholar]
  51. Toledo-Arana A., Dussurget O., Nikitas G., Sesto N., Guet-Revillet H., Balestrino D., Loh E., Gripenland J., Tiensuu T. et al. ( 2009). The Listeria transcriptional landscape from saprophytism to virulence. Nature 459:950–956[PubMed] [CrossRef]
    [Google Scholar]
  52. Vázquez-Boland J. A., Kuhn M., Berche P., Chakraborty T., Domínguez-Bernal G., Goebel W., González-Zorn B., Wehland J., Kreft J. ( 2001). Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev 14:584–640[PubMed] [CrossRef]
    [Google Scholar]
  53. Vega Y., Dickneite C., Ripio M. T., Böckmann R., González-Zorn B., Novella S., Domínguez-Bernal G., Goebel W., Vázquez-Boland J. A. ( 1998). Functional similarities between the Listeria monocytogenes virulence regulator PrfA and cyclic AMP receptor protein: the PrfA* (Gly145Ser) mutation increases binding affinity for target DNA. J Bacteriol 180:6655–6660[PubMed]
    [Google Scholar]
  54. Vega Y., Rauch M., Banfield M. J., Ermolaeva S., Scortti M., Goebel W., Vázquez-Boland J. A. ( 2004). New Listeria monocytogenes prfA* mutants, transcriptional properties of PrfA* proteins and structure–function of the virulence regulator PrfA. Mol Microbiol 52:1553–1565[PubMed] [CrossRef]
    [Google Scholar]
  55. Velge P., Herler M., Johansson J., Roche S. M., Témoin S., Fedorov A. A., Gracieux P., Almo S. C., Goebel W., Cossart P. ( 2007). A naturally occurring mutation K220T in the pleiotropic activator PrfA of Listeria monocytogenes results in a loss of virulence due to decreasing DNA-binding affinity. Microbiology 153:995–1005[PubMed] [CrossRef]
    [Google Scholar]
  56. Wong K. K., Freitag N. E. ( 2004). A novel mutation within the central Listeria monocytogenes regulator PrfA that results in constitutive expression of virulence gene products. J Bacteriol 186:6265–6276[PubMed] [CrossRef]
    [Google Scholar]
  57. Wong K. K., Bouwer H. G., Freitag N. E. ( 2004). Evidence implicating the 5′ untranslated region of Listeria monocytogenes actA in the regulation of bacterial actin-based motility. Cell Microbiol 6:155–166[PubMed] [CrossRef]
    [Google Scholar]
  58. Xayarath B., Marquis H., Port G. C., Freitag N. E. ( 2009). Listeria monocytogenes CtaP is a multifunctional cysteine transport-associated protein required for bacterial pathogenesis. Mol Microbiol 74:956–973[PubMed] [CrossRef]
    [Google Scholar]
  59. Youngman P. ( 1987). Plasmid vectors recovering and exploiting Tn917 transposons in Bacillus and other Gram-positive bacteria. Plasmids: a Practical Approach, 1st edn.79–103 Hardy K. G. Oxford: IRL Press;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.049957-0
Loading
/content/journal/micro/10.1099/mic.0.049957-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error