1887

Abstract

The ribosome-bound trigger factor (TF) chaperone assists folding of newly synthesized polypeptides and participates in the assembly of macromolecular complexes. In the present study we showed that multiple distinct TF paralogues are present in genomes of , a bacterial genus known for its ability to grow using organohalide respiration. Two full-length TF chaperones and at least one truncated TF (lacking the N-terminal ribosome-binding domain) were identified, the latter being systematically linked to clusters of reductive dehalogenase genes encoding the key enzymes in organohalide respiration. Using a well-characterized heterologous chaperone-deficient strain lacking both TF and DnaK chaperones, we demonstrated that all three TF chaperones were functional , as judged by their ability to partially suppress bacterial growth defects and protein aggregation in the absence of both major chaperones. Next, we found that the N-terminal truncated TF-like protein PceT functions as a dedicated chaperone for the cognate reductive dehalogenase PceA by solubilizing and stabilizing it in the heterologous system. Finally, we showed that PceT specifically interacts with the twin-arginine signal peptide of PceA. Taken together, our data define PceT (and more generally the new RdhT family) as a class of TF-like chaperones involved in the maturation of proteins secreted by the twin-arginine translocation pathway.

Funding
This study was supported by the:
  • European Molecular Biology Organization (EMBO) (Award ASTF 80.00-2008)
  • Action Temporaire Incitative Sur Programme-Centre National de la Recherche Scientifique (ATIP-CNRS) Microbiology
  • Region Midi-Pyrénées
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.050880-0
2011-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/8/2410.html?itemId=/content/journal/micro/10.1099/mic.0.050880-0&mimeType=html&fmt=ahah

References

  1. Bachmann B. J. ( 1972). Pedigrees of some mutant strains of Escherichia coli K-12. Bacteriol Rev 36:525–557[PubMed]
    [Google Scholar]
  2. Baram D., Pyetan E., Sittner A., Auerbach-Nevo T., Bashan A., Yonath A. ( 2005). Structure of trigger factor binding domain in biologically homologous complex with eubacterial ribosome reveals its chaperone action. Proc Natl Acad Sci U S A 102:12017–12022 [View Article][PubMed]
    [Google Scholar]
  3. Deuerling E., Schulze-Specking A., Tomoyasu T., Mogk A., Bukau B. ( 1999). Trigger factor and DnaK cooperate in folding of newly synthesized proteins. Nature 400:693–696 [View Article][PubMed]
    [Google Scholar]
  4. Ferbitz L., Maier T., Patzelt H., Bukau B., Deuerling E., Ban N. ( 2004). Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins. Nature 431:590–596 [View Article][PubMed]
    [Google Scholar]
  5. Futagami T., Yamaguchi T., Nakayama S., Goto M., Furukawa K. ( 2006). Effects of chloromethanes on growth of and deletion of the pce gene cluster in dehalorespiring Desulfitobacterium hafniense strain Y51. Appl Environ Microbiol 72:5998–6003 [View Article][PubMed]
    [Google Scholar]
  6. Genest O., Méjean V., Iobbi-Nivol C. ( 2009). Multiple roles of TorD-like chaperones in the biogenesis of molybdoenzymes. FEMS Microbiol Lett 297:1–9 [View Article][PubMed]
    [Google Scholar]
  7. Genevaux P., Keppel F., Schwager F., Langendijk-Genevaux P. S., Hartl F. U., Georgopoulos C. ( 2004). In vivo analysis of the overlapping functions of DnaK and trigger factor. EMBO Rep 5:195–200 [View Article][PubMed]
    [Google Scholar]
  8. Göthel S. F., Schmid R., Wipat A., Carter N. M., Emmerson P. T., Harwood C. R., Marahiel M. A. ( 1997). An internal FK506-binding domain is the catalytic core of the prolyl isomerase activity associated with the Bacillus subtilis trigger factor. Eur J Biochem 244:59–65 [View Article][PubMed]
    [Google Scholar]
  9. Guthrie B., Wickner W. ( 1990). Trigger factor depletion or overproduction causes defective cell division but does not block protein export. J Bacteriol 172:5555–5562[PubMed]
    [Google Scholar]
  10. Guymer D., Maillard J., Sargent F. ( 2009). A genetic analysis of in vivo selenate reduction by Salmonella enterica serovar Typhimurium LT2 and Escherichia coli K12. Arch Microbiol 191:519–528 [View Article][PubMed]
    [Google Scholar]
  11. Hartl F. U., Hayer-Hartl M. ( 2009). Converging concepts of protein folding in vitro and in vivo . Nat Struct Mol Biol 16:574–581 [View Article][PubMed]
    [Google Scholar]
  12. Hesterkamp T., Bukau B. ( 1996). The Escherichia coli trigger factor. FEBS Lett 389:32–34 [View Article][PubMed]
    [Google Scholar]
  13. Hesterkamp T., Hauser S., Lütcke H., Bukau B. ( 1996). Escherichia coli trigger factor is a prolyl isomerase that associates with nascent polypeptide chains. Proc Natl Acad Sci U S A 93:4437–4441 [View Article][PubMed]
    [Google Scholar]
  14. Hesterkamp T., Deuerling E., Bukau B. ( 1997). The amino-terminal 118 amino acids of Escherichia coli trigger factor constitute a domain that is necessary and sufficient for binding to ribosomes. J Biol Chem 272:21865–21871 [View Article][PubMed]
    [Google Scholar]
  15. Hoffmann A., Bukau B., Kramer G. ( 2010). Structure and function of the molecular chaperone Trigger Factor. Biochim Biophys Acta 1803:650–661 [View Article][PubMed]
    [Google Scholar]
  16. Holzapfel E., Moser M., Schiltz E., Ueda T., Betton J. M., Müller M. ( 2009). Twin-arginine-dependent translocation of SufI in the absence of cytosolic helper proteins. Biochemistry 48:5096–5105 [View Article][PubMed]
    [Google Scholar]
  17. John M., Schmitz R. P., Westermann M., Richter W., Diekert G. ( 2006). Growth substrate dependent localization of tetrachloroethene reductive dehalogenase in Sulfurospirillum multivorans . Arch Microbiol 186:99–106 [View Article][PubMed]
    [Google Scholar]
  18. Kaiser C. M., Chang H. C., Agashe V. R., Lakshmipathy S. K., Etchells S. A., Hayer-Hartl M., Hartl F. U., Barral J. M. ( 2006). Real-time observation of trigger factor function on translating ribosomes. Nature 444:455–460 [View Article][PubMed]
    [Google Scholar]
  19. Kandror O., Goldberg A. L. ( 1997). Trigger factor is induced upon cold shock and enhances viability of Escherichia coli at low temperatures. Proc Natl Acad Sci U S A 94:4978–4981 [View Article][PubMed]
    [Google Scholar]
  20. Karimova G., Pidoux J., Ullmann A., Ladant D. ( 1998). A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci U S A 95:5752–5756 [View Article][PubMed]
    [Google Scholar]
  21. Kawamoto J., Kurihara T., Kitagawa M., Kato I., Esaki N. ( 2007). Proteomic studies of an Antarctic cold-adapted bacterium, Shewanella livingstonensis Ac10, for global identification of cold-inducible proteins. Extremophiles 11:819–826 [View Article][PubMed]
    [Google Scholar]
  22. Kern M., Mager A. M., Simon J. ( 2007). Role of individual nap gene cluster products in NapC-independent nitrate respiration of Wolinella succinogenes . Microbiology 153:3739–3747 [View Article][PubMed]
    [Google Scholar]
  23. Kimoto H., Suye S., Makishima H., Arai J., Yamaguchi S., Fujii Y., Yoshioka T., Taketo A. ( 2010). Cloning of a novel dehalogenase from environmental DNA. Biosci Biotechnol Biochem 74:1290–1292 [View Article][PubMed]
    [Google Scholar]
  24. Kramer G., Ramachandiran V., Horowitz P. M., Hardesty B. ( 2002a). The molecular chaperone DnaK is not recruited to translating ribosomes that lack trigger factor. Arch Biochem Biophys 403:63–70 [View Article][PubMed]
    [Google Scholar]
  25. Kramer G., Rauch T., Rist W., Vorderwülbecke S., Patzelt H., Schulze-Specking A., Ban N., Deuerling E., Bukau B. ( 2002b). L23 protein functions as a chaperone docking site on the ribosome. Nature 419:171–174 [View Article][PubMed]
    [Google Scholar]
  26. Kramer G., Rutkowska A., Wegrzyn R. D., Patzelt H., Kurz T. A., Merz F., Rauch T., Vorderwülbecke S., Deuerling E., Bukau B. ( 2004). Functional dissection of Escherichia coli trigger factor: unraveling the function of individual domains. J Bacteriol 186:3777–3784 [View Article][PubMed]
    [Google Scholar]
  27. Kramer G., Boehringer D., Ban N., Bukau B. ( 2009). The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins. Nat Struct Mol Biol 16:589–597 [View Article][PubMed]
    [Google Scholar]
  28. Kristensen O., Gajhede M. ( 2003). Chaperone binding at the ribosomal exit tunnel. Structure 11:1547–1556 [View Article][PubMed]
    [Google Scholar]
  29. Lee H. C., Bernstein H. D. ( 2002). Trigger factor retards protein export in Escherichia coli . J Biol Chem 277:43527–43535 [View Article][PubMed]
    [Google Scholar]
  30. Li H., Chang L., Howell J. M., Turner R. J. ( 2010). DmsD, a Tat system specific chaperone, interacts with other general chaperones and proteins involved in the molybdenum cofactor biosynthesis. Biochim Biophys Acta 1804:1301–1309[PubMed] [CrossRef]
    [Google Scholar]
  31. Liu C. P., Perrett S., Zhou J. M. ( 2005). Dimeric trigger factor stably binds folding-competent intermediates and cooperates with the DnaK–DnaJ–GrpE chaperone system to allow refolding. J Biol Chem 280:13315–13320 [View Article][PubMed]
    [Google Scholar]
  32. Ludlam A. V., Moore B. A., Xu Z. ( 2004). The crystal structure of ribosomal chaperone trigger factor from Vibrio cholerae . Proc Natl Acad Sci U S A 101:13436–13441 [View Article][PubMed]
    [Google Scholar]
  33. Maillard J., Schumacher W., Vazquez F., Regeard C., Hagen W. R., Holliger C. ( 2003). Characterization of the corrinoid iron–sulfur protein tetrachloroethene reductive dehalogenase of Dehalobacter restrictus . Appl Environ Microbiol 69:4628–4638 [View Article][PubMed]
    [Google Scholar]
  34. Maillard J., Regeard C., Holliger C. ( 2005). Isolation and characterization of Tn-Dha1, a transposon containing the tetrachloroethene reductive dehalogenase of Desulfitobacterium hafniense strain TCE1. Environ Microbiol 7:107–117 [View Article][PubMed]
    [Google Scholar]
  35. Maillard J., Spronk C. A., Buchanan G., Lyall V., Richardson D. J., Palmer T., Vuister G. W., Sargent F. ( 2007). Structural diversity in twin-arginine signal peptide-binding proteins. Proc Natl Acad Sci U S A 104:15641–15646 [View Article][PubMed]
    [Google Scholar]
  36. Martinez-Hackert E., Hendrickson W. A. ( 2007). Structures of and interactions between domains of trigger factor from Thermotoga maritima . Acta Crystallogr D Biol Crystallogr 63:536–547 [View Article][PubMed]
    [Google Scholar]
  37. Martinez-Hackert E., Hendrickson W. A. ( 2009). Promiscuous substrate recognition in folding and assembly activities of the trigger factor chaperone. Cell 138:923–934 [View Article][PubMed]
    [Google Scholar]
  38. Mayer M. P. ( 1995). A new set of useful cloning and expression vectors derived from pBlueScript. Gene 163:41–46 [View Article][PubMed]
    [Google Scholar]
  39. Merz F., Hoffmann A., Rutkowska A., Zachmann-Brand B., Bukau B., Deuerling E. ( 2006). The C-terminal domain of Escherichia coli trigger factor represents the central module of its chaperone activity. J Biol Chem 281:31963–31971 [View Article][PubMed]
    [Google Scholar]
  40. Morita Y., Futagami T., Goto M., Furukawa K. ( 2009). Functional characterization of the trigger factor protein PceT of tetrachloroethene-dechlorinating Desulfitobacterium hafniense Y51. Appl Microbiol Biotechnol 83:775–781 [View Article][PubMed]
    [Google Scholar]
  41. Neumann A., Wohlfarth G., Diekert G. ( 1998). Tetrachloroethene dehalogenase from Dehalospirillum multivorans: cloning, sequencing of the encoding genes, and expression of the pceA gene in Escherichia coli . J Bacteriol 180:4140–4145[PubMed]
    [Google Scholar]
  42. Patzelt H., Rüdiger S., Brehmer D., Kramer G., Vorderwülbecke S., Schaffitzel E., Waitz A., Hesterkamp T., Dong L. et al. ( 2001). Binding specificity of Escherichia coli trigger factor. Proc Natl Acad Sci U S A 98:14244–14249 [View Article][PubMed]
    [Google Scholar]
  43. Patzelt H., Kramer G., Rauch T., Schönfeld H. J., Bukau B., Deuerling E. ( 2002). Three-state equilibrium of Escherichia coli trigger factor. Biol Chem 383:1611–1619 [View Article][PubMed]
    [Google Scholar]
  44. Piette F., D’Amico S., Struvay C., Mazzucchelli G., Renaut J., Tutino M. L., Danchin A., Leprince P., Feller G. ( 2010). Proteomics of life at low temperatures: trigger factor is the primary chaperone in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Mol Microbiol 76:120–132 [View Article][PubMed]
    [Google Scholar]
  45. Potter L. C., Cole J. A. ( 1999). Essential roles for the products of the napABCD genes, but not napFGH, in periplasmic nitrate reduction by Escherichia coli K-12. Biochem J 344:69–76 [View Article][PubMed]
    [Google Scholar]
  46. Prat L. ( 2009). Identification and characterization of proteins supporting dehalorespiration in Desulfitobacterium hafniense strain TCE1 PhD thesis, École Polytechnique Fédérale de Lausanne; Switzerland:
    [Google Scholar]
  47. Qiu Y., Kathariou S., Lubman D. M. ( 2006). Proteomic analysis of cold adaptation in a Siberian permafrost bacterium – Exiguobacterium sibiricum 255-15 by two-dimensional liquid separation coupled with mass spectrometry. Proteomics 6:5221–5233 [View Article][PubMed]
    [Google Scholar]
  48. Rutkowska A., Mayer M. P., Hoffmann A., Merz F., Zachmann-Brand B., Schaffitzel C., Ban N., Deuerling E., Bukau B. ( 2008). Dynamics of trigger factor interaction with translating ribosomes. J Biol Chem 283:4124–4132 [View Article][PubMed]
    [Google Scholar]
  49. Sambrook J., Fritsch E. F., Maniatis T. ( 1989). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  50. Sargent F. ( 2007a). The twin-arginine transport system: moving folded proteins across membranes. Biochem Soc Trans 35:835–847 [View Article][PubMed]
    [Google Scholar]
  51. Sargent F. ( 2007b). Constructing the wonders of the bacterial world: biosynthesis of complex enzymes. Microbiology 153:633–651 [View Article][PubMed]
    [Google Scholar]
  52. Smidt H., van Leest M., van der Oost J., de Vos W. M. ( 2000). Transcriptional regulation of the cpr gene cluster in ortho-chlorophenol-respiring Desulfitobacterium dehalogenans . J Bacteriol 182:5683–5691 [View Article][PubMed]
    [Google Scholar]
  53. Stoller G., Rücknagel K. P., Nierhaus K. H., Schmid F. X., Fischer G., Rahfeld J. U. ( 1995). A ribosome-associated peptidyl-prolyl cis/trans isomerase identified as the trigger factor. EMBO J 14:4939–4948[PubMed]
    [Google Scholar]
  54. Suyama A., Yamashita M., Yoshino S., Furukawa K. ( 2002). Molecular characterization of the PceA reductive dehalogenase of Desulfitobacterium sp. strain Y51. J Bacteriol 184:3419–3425 [View Article][PubMed]
    [Google Scholar]
  55. Tamura K., Dudley J., Nei M., Kumar S. ( 2007). mega4: Molecular Evolutionary Genetics Analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  56. Teter S. A., Houry W. A., Ang D., Tradler T., Rockabrand D., Fischer G., Blum P., Georgopoulos C., Hartl F. U. ( 1999). Polypeptide flux through bacterial Hsp70: DnaK cooperates with trigger factor in chaperoning nascent chains. Cell 97:755–765 [View Article][PubMed]
    [Google Scholar]
  57. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. ( 1997). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  58. Tomoyasu T., Mogk A., Langen H., Goloubinoff P., Bukau B. ( 2001). Genetic dissection of the roles of chaperones and proteases in protein folding and degradation in the Escherichia coli cytosol. Mol Microbiol 40:397–413 [View Article][PubMed]
    [Google Scholar]
  59. Ullers R. S., Ang D., Schwager F., Georgopoulos C., Genevaux P. ( 2007). Trigger Factor can antagonize both SecB and DnaK/DnaJ chaperone functions in Escherichia coli . Proc Natl Acad Sci U S A 104:3101–3106 [View Article][PubMed]
    [Google Scholar]
  60. Villemur R., Lanthier M., Beaudet R., Lépine F. ( 2006). The Desulfitobacterium genus. FEMS Microbiol Rev 30:706–733 [View Article][PubMed]
    [Google Scholar]
  61. Yao Y., Bhabha G., Kroon G., Landes M., Dyson H. J. ( 2008). Structure discrimination for the C-terminal domain of Escherichia coli trigger factor in solution. J Biomol NMR 40:23–30 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.050880-0
Loading
/content/journal/micro/10.1099/mic.0.050880-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error