1887

Abstract

Species belonging to the genus are free-living fungi common in soil and root ecosystems, and have a broad range of uses in industry and agricultural biotechnology. Some species of the genus are widely used biocontrol agents, and their success is in part due to mycoparasitism, a lifestyle in which one fungus is parasitic on another. In addition species have been found to elicit plant defence responses and to stimulate plant growth. In order to survive and spread, switches from vegetative to reproductive development, and has evolved with several sophisticated molecular mechanisms to this end. Asexual development (conidiation) is induced by light and mechanical injury, although the effects of these inducers are influenced by environmental conditions, such as nutrient status and pH. A current appreciation of the links between the molecular participants is presented in this review. The photoreceptor complex BLR-1/BLR-2, ENVOY, VELVET, and NADPH oxidases have been suggested as key participants in this process. In concert with these elements, conserved signalling pathways, such as those involving heterotrimeric G proteins, mitogen-activated protein kinases (MAPKs) and cAMP-dependent protein kinase A (cAMP-PKA) are involved in this molecular orchestration. Finally, recent comparative and functional genomics analyses allow a comparison of the machinery involved in conidiophore development in model systems with that present in and a model to be proposed for the key factors involved in the development of these structures.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.052688-0
2012-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/1/3.html?itemId=/content/journal/micro/10.1099/mic.0.052688-0&mimeType=html&fmt=ahah

References

  1. Adams T. H., Wieser J. K., Yu J. H. ( 1998). Asexual sporulation in Aspergillus nidulans . Microbiol Mol Biol Rev 62:35–54[PubMed]
    [Google Scholar]
  2. Aguirre J., Ríos-Momberg M., Hewitt D., Hansberg W. ( 2005). Reactive oxygen species and development in microbial eukaryotes. Trends Microbiol 13:111–118 [View Article][PubMed]
    [Google Scholar]
  3. Bahn Y. S., Xue C., Idnurm A., Rutherford J. C., Heitman J., Cardenas M. E. ( 2007). Sensing the environment: lessons from fungi. Nat Rev Microbiol 5:57–69 [View Article][PubMed]
    [Google Scholar]
  4. Baum D., Horwitz B. A. ( 1991). Change in synthesis and abundance of specific polypeptides at early and late stage of blue-light-induced sporulation of Trichoderma . J Photochem Photobiol 11:117–127 [View Article]
    [Google Scholar]
  5. Bayram O., Krappmann S., Ni M., Bok J. W., Helmstaedt K., Valerius O., Braus-Stromeyer S., Kwon N. J., Keller N. P. & other authors ( 2008a). VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320:1504–1506 [View Article][PubMed]
    [Google Scholar]
  6. Bayram O., Krappmann S., Seiler S., Vogt N., Braus G. H. ( 2008b). Neurospora crassa ve-1 affects asexual conidiation. Fungal Genet Biol 45:127–138 [View Article][PubMed]
    [Google Scholar]
  7. Berrocal-Tito G. M., Rosales-Saavedra T., Herrera-Estrella A., Horwitz B. A. ( 2000). Characterization of blue-light and developmental regulation of the photolyase gene phr1 in Trichoderma harzianum . Photochem Photobiol 71:662–668 [View Article][PubMed]
    [Google Scholar]
  8. Betina V., Zajacová J. ( 1978). Inhibition of photo-induced Trichoderma viride conidiation by inhibitors of RNA synthesis. Folia Microbiol (Praha) 23:460–464 [View Article][PubMed]
    [Google Scholar]
  9. Brunner K., Omann M., Pucher M. E., Delic M., Lehner S. M., Domnanich P., Kratochwill K., Druzhinina I., Denk D., Zeilinger S. ( 2008). Trichoderma G protein-coupled receptors: functional characterisation of a cAMP receptor-like protein from Trichoderma atroviride . Curr Genet 54:283–299 [View Article][PubMed]
    [Google Scholar]
  10. Calvo A. M. ( 2008). The VeA regulatory system and its role in morphological and chemical development in fungi. Fungal Genet Biol 45:1053–1061 [View Article][PubMed]
    [Google Scholar]
  11. Calvo A. M., Bok J., Brooks W., Keller N. P. ( 2004). veA is required for toxin and sclerotial production in Aspergillus parasiticus . Appl Environ Microbiol 70:4733–4739 [View Article][PubMed]
    [Google Scholar]
  12. Cano-Domínguez N., Alvarez-Delfín K., Hansberg W., Aguirre J. ( 2008). NADPH oxidases NOX-1 and NOX-2 require the regulatory subunit NOR-1 to control cell differentiation and growth in Neurospora crassa . Eukaryot Cell 7:1352–1361 [View Article][PubMed]
    [Google Scholar]
  13. Casas-Flores S., Rios-Momberg M., Bibbins M., Ponce-Noyola P., Herrera-Estrella A. ( 2004). BLR-1 and BLR-2, key regulatory elements of photoconidiation and mycelial growth in Trichoderma atroviride . Microbiology 150:3561–3569 [View Article][PubMed]
    [Google Scholar]
  14. Casas-Flores S., Rios-Momberg M., Rosales-Saavedra T., Martínez-Hernández P., Olmedo-Monfil V., Herrera-Estrella A. ( 2006). Cross talk between a fungal blue-light perception system and the cyclic AMP signaling pathway. Eukaryot Cell 5:499–506 [View Article][PubMed]
    [Google Scholar]
  15. Castellanos F., Schmoll M., Martínez P., Tisch D., Kubicek C. P., Herrera-Estrella A., Esquivel-Naranjo E. U. ( 2010). Crucial factors of the light perception machinery and their impact on growth and cellulase gene transcription in Trichoderma reesei . Fungal Genet Biol 47:468–476 [View Article][PubMed]
    [Google Scholar]
  16. Chen D., Toone W. M., Mata J., Lyne R., Burns G., Kivinen K., Brazma A., Jones N., Bähler J. ( 2003). Global transcriptional responses of fission yeast to environmental stress. Mol Biol Cell 14:214–229 [View Article][PubMed]
    [Google Scholar]
  17. Chen C. H., DeMay B. S., Gladfelter A. S., Dunlap J. C., Loros J. J. ( 2010). Physical interaction between VIVID and white collar complex regulates photoadaptation in Neurospora . Proc Natl Acad Sci U S A 107:16715–16720 [View Article][PubMed]
    [Google Scholar]
  18. Chovanec P., Hudecová D., Varecka L. ( 2001). Vegetative growth, aging- and light-induced conidiation of Trichoderma viride cultivated on different carbon sources. Folia Microbiol (Praha) 46:417–422 [View Article][PubMed]
    [Google Scholar]
  19. Clutterbuck A. J. ( 1969). A mutational analysis of conidial development in Aspergillus nidulans . Genetics 63:317–327[PubMed]
    [Google Scholar]
  20. Di Pietro A., García-MacEira F. I., Méglecz E., Roncero M. I. ( 2001). A MAP kinase of the vascular wilt fungus Fusarium oxysporum is essential for root penetration and pathogenesis. Mol Microbiol 39:1140–1152 [View Article][PubMed]
    [Google Scholar]
  21. Druzhinina I., Kubicek C. P. ( 2005). Species concept and biodiversity in Trichoderma and Hypocrea: from aggregate species to species clusters?. J Zhejiang Univ Sci B 6:100–112 [View Article]
    [Google Scholar]
  22. Esquivel-Naranjo E. U. ( 2007). Análisis molecular de la percepción de luz en Trichoderma atroviride .
    [Google Scholar]
  23. Etxebeste O., Garzia A., Espeso E. A., Ugalde U. ( 2010). Aspergillus nidulans asexual development: making the most of cellular modules. Trends Microbiol 18:569–576 [View Article][PubMed]
    [Google Scholar]
  24. Fiedler K., Schütz E., Geh S. ( 2001). Detection of microbial volatile organic compounds (MVOCs) produced by moulds on various materials. Int J Hyg Environ Health 204:111–121 [View Article][PubMed]
    [Google Scholar]
  25. Friedl M. A., Kubicek C. P., Druzhinina I. S. ( 2008). Carbon source dependence and photostimulation of conidiation in Hypocrea atroviridis . Appl Environ Microbiol 74:245–250 [View Article][PubMed]
    [Google Scholar]
  26. Galun E. ( 1971). Scanning electron microscopy of intact Trichoderma colonies. J Bacteriol 108:938–940[PubMed]
    [Google Scholar]
  27. Galun E., Gressel J. ( 1966). Morphogenesis in Trichoderma: suppression of photoinduction by 5-fluorouracil. Science 151:696–698 [View Article][PubMed]
    [Google Scholar]
  28. Gao S., Nuss D. L. ( 1996). Distinct roles for two G protein α subunits in fungal virulence, morphology, and reproduction revealed by targeted gene disruption. Proc Natl Acad Sci U S A 93:14122–14127 [View Article][PubMed]
    [Google Scholar]
  29. Gasch A. P., Spellman P. T., Kao C. M., Carmel-Harel O., Eisen M. B., Storz G., Botstein D., Brown P. O. ( 2000). Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257[PubMed] [CrossRef]
    [Google Scholar]
  30. Gresik M., Kolarova N., Farkas V. ( 1988). Membrane potential, ATP, and cyclic AMP changes induced by light in Trichoderma viride . Exp Mycol 12:295–301 [View Article]
    [Google Scholar]
  31. Gresík M., Kolarova N., Farkas V. ( 1989). Light-stimulated phosphorylation of proteins in cell-free extracts from Trichoderma viride . FEBS Lett 248:185–187 [View Article][PubMed]
    [Google Scholar]
  32. Gresík M., Kolarova N., Farkas V. ( 1991). Hyperpolarization and intracellular acidification in Trichoderma viride as a response to illumination. J Gen Microbiol 137:2605–2609[PubMed] [CrossRef]
    [Google Scholar]
  33. Gressel J., Galun E. ( 1967). Morphogenesis in Trichoderma: photoinduction and RNA. Dev Biol 15:575–598 [View Article][PubMed]
    [Google Scholar]
  34. Gressel J., Bar-Lev S., Galun E. ( 1975). Blue light induced response in the absence of free oxygen. Plant Cell Physiol 16:367–370
    [Google Scholar]
  35. Gutter Y. ( 1957). Effect of light in sporulation of Trichoderma viride . Bul Res Council Israel Sect D 5:273–286
    [Google Scholar]
  36. Hansberg W., Aguirre J. ( 1990). Hyperoxidant states cause microbial cell differentiation by cell isolation from dioxygen. J Theor Biol 142:201–221 [View Article][PubMed]
    [Google Scholar]
  37. Hansberg W., de Groot H., Sies H. ( 1993). Reactive oxygen species associated with cell differentiation in Neurospora crassa . Free Radic Biol Med 14:287–293 [View Article][PubMed]
    [Google Scholar]
  38. Heintzen C., Loros J. J., Dunlap J. C. ( 2001). The PAS protein VIVID defines a clock-associated feedback loop that represses light input, modulates gating, and regulates clock resetting. Cell 104:453–464 [View Article][PubMed]
    [Google Scholar]
  39. Heller J., Tudzynski P. ( 2011). Reactive oxygen species in phytopathogenic fungi: signaling, development, and disease. Annu Rev Phytopathol 49:369–390 [View Article][PubMed]
    [Google Scholar]
  40. Hirayama J., Cho S., Sassone-Corsi P. ( 2007). Circadian control by the reduction/oxidation pathway: catalase represses light-dependent clock gene expression in the zebrafish. Proc Natl Acad Sci U S A 104:15747–15752 [View Article][PubMed]
    [Google Scholar]
  41. Horwitz B. A., Gressel J., Malkin S. ( 1985). Photoperception mutants in Trichoderma: mutants that sporulate in response to stress but not light. Curr Genet 9:605–613 [View Article]
    [Google Scholar]
  42. Horwitz B. A., Perlman A., Gressel J. ( 1990). Induction of Trichoderma sporulation by nanosecond laser pulses: evidence against cryptochrome cycling. Photochem Photobiol 51:99–104 [View Article][PubMed]
    [Google Scholar]
  43. Horwitz B. A., Sharon A., Lu S. W., Ritter V., Sandrock T. M., Yoder O. C., Turgeon B. G. ( 1999). A G protein alpha subunit from Cochliobolus heterostrophus involved in mating and appressorium formation. Fungal Genet Biol 26:19–32 [View Article][PubMed]
    [Google Scholar]
  44. Hunt S. M., Thompson S., Elvin M., Heintzen C. ( 2010). VIVID interacts with the WHITE COLLAR complex and FREQUENCY-interacting RNA helicase to alter light and clock responses in Neurospora . Proc Natl Acad Sci U S A 107:16709–16714 [View Article][PubMed]
    [Google Scholar]
  45. Idnurm A., Heitman J. ( 2005). Light controls growth and development via a conserved pathway in the fungal kingdom. PLoS Biol 3:e95 [View Article][PubMed]
    [Google Scholar]
  46. Kasahara S., Nuss D. L. ( 1997). Targeted disruption of a fungal G-protein βsubunit gene results in increased vegetative growth but reduced virulence. Mol Plant Microbe Interact 10:984–993 [View Article][PubMed]
    [Google Scholar]
  47. Kato N., Brooks W., Calvo A. M. ( 2003). The expression of sterigmatocystin and penicillin genes in Aspergillus nidulans is controlled by veA, a gene required for sexual development. Eukaryot Cell 2:1178–1186 [View Article][PubMed]
    [Google Scholar]
  48. Kays A. M., Rowley P. S., Baasiri R. A., Borkovich K. A. ( 2000). Regulation of conidiation and adenylyl cyclase levels by the Gα protein GNA-3 in Neurospora crassa . Mol Cell Biol 20:7693–7705 [View Article][PubMed]
    [Google Scholar]
  49. Kim H. Y., Han K. H., Lee M., Oh M., Kim H. S., Zhixiong X., Han D. M., Jahng K. Y., Kim J. H., Chae K. S. ( 2009). The veA gene is necessary for the negative regulation of the veA expression in Aspergillus nidulans . Curr Genet 55:391–397 [View Article][PubMed]
    [Google Scholar]
  50. Klein D., Eveleigh D. E. ( 1998). Basic biology, taxonomy and genetics 1. Trichoderma and Gliocladium57–73 Kubicek C. P., Harman G. E. London: Taylor & Francis;
    [Google Scholar]
  51. Kolarova N., Haplová J., Gresík M. ( 1992). Light-activated adenyl cyclase from Trichoderma viride . FEMS Microbiol Lett 72:275–278 [View Article][PubMed]
    [Google Scholar]
  52. Komon-Zelazowska M., Neuhof T., Dieckmann R., von Döhren H., Herrera-Estrella A., Kubicek C. P., Druzhinina I. S. ( 2007). Formation of atroviridin by Hypocrea atroviridis is conidiation associated and positively regulated by blue light and the G protein GNA3. Eukaryot Cell 6:2332–2342 [View Article][PubMed]
    [Google Scholar]
  53. Krystofova S., Borkovich K. A. ( 2005). The heterotrimeric G-protein subunits GNG-1 and GNB-1 form a Gβγ dimer required for normal female fertility, asexual development, and Gα protein levels in Neurospora crassa . Eukaryot Cell 4:365–378 [View Article][PubMed]
    [Google Scholar]
  54. Kumagai T., Oda Y. ( 1969). An action spectrum for photoinduced sporulation in the fungus Trichoderma viride . Plant Cell Physiol 10:387–392
    [Google Scholar]
  55. Kumar A., Scher K., Mukherjee M., Pardovitz-Kedmi E., Sible G. V., Singh U. S., Kale S. P., Mukherjee P. K., Horwitz B. A. ( 2010). Overlapping and distinct functions of two Trichoderma virens MAP kinases in cell-wall integrity, antagonistic properties and repression of conidiation. Biochem Biophys Res Commun 398:765–770 [View Article][PubMed]
    [Google Scholar]
  56. Lara-Ortíz T., Riveros-Rosas H., Aguirre J. ( 2003). Reactive oxygen species generated by microbial NADPH oxidase NoxA regulate sexual development in Aspergillus nidulans . Mol Microbiol 50:1241–1255 [View Article][PubMed]
    [Google Scholar]
  57. Lev S., Sharon A., Hadar R., Ma H., Horwitz B. A. ( 1999). A mitogen-activated protein kinase of the corn leaf pathogen Cochliobolus heterostrophus is involved in conidiation, appressorium formation, and pathogenicity: diverse roles for mitogen-activated protein kinase homologs in foliar pathogens. Proc Natl Acad Sci U S A 96:13542–13547 [View Article][PubMed]
    [Google Scholar]
  58. Liu Y., He Q., Cheng P. ( 2003). Photoreception in Neurospora: a tale of two White Collar proteins. Cell Mol Life Sci 60:2131–2138 [View Article][PubMed]
    [Google Scholar]
  59. Loubradou G., Bégueret J., Turcq B. ( 1999). MOD-D, a G alpha subunit of fungus Podospora anserina, is involved in both regulation of development and vegetative incompatibility. Genetics 152:519–528[PubMed]
    [Google Scholar]
  60. Malagnac F., Lalucque H., Lepère G., Silar P. ( 2004). Two NADPH oxidase isoforms are required for sexual reproduction and ascospore germination in the filamentous fungus Podospora anserina . Fungal Genet Biol 41:982–997 [View Article][PubMed]
    [Google Scholar]
  61. Malzahn E., Ciprianidis S., Káldi K., Schafmeier T., Brunner M. ( 2010). Photoadaptation in Neurospora by competitive interaction of activating and inhibitory LOV domains. Cell 142:762–772 [View Article][PubMed]
    [Google Scholar]
  62. Mendoza-Mendoza A., Pozo M. J., Grzegorski D., Martínez P., García J. M., Olmedo-Monfil V., Cortés C., Kenerley C., Herrera-Estrella A. ( 2003). Enhanced biocontrol activity of Trichoderma through inactivation of a mitogen-activated protein kinase. Proc Natl Acad Sci U S A 100:15965–15970 [View Article][PubMed]
    [Google Scholar]
  63. Montero-Barrientos M., Hermosa R., Cardoza R. E., Gutiérrez S., Monte E. ( 2011). Functional analysis of the Trichoderma harzianum nox1 gene, encoding an NADPH oxidase, relates production of reactive oxygen species to specific biocontrol activity against Pythium ultimum . Appl Environ Microbiol 77:3009–3016 [View Article][PubMed]
    [Google Scholar]
  64. Moreno-Mateos M. A., Delgado-Jarana J., Codón A. C., Benítez T. ( 2007). pH and Pac1 control development and antifungal activity in Trichoderma harzianum. . Fungal Genet Biol 44:1355–1367 [View Article][PubMed]
    [Google Scholar]
  65. Mukherjee P. K., Kenerley C. M. ( 2010). Regulation of morphogenesis and biocontrol properties in Trichoderma virens by a VELVET protein, Vel1. Appl Environ Microbiol 76:2345–2352 [View Article][PubMed]
    [Google Scholar]
  66. Mukherjee P. K., Latha J., Hadar R., Horwitz B. A. ( 2003). TmkA, a mitogen-activated protein kinase of Trichoderma virens, is involved in biocontrol properties and repression of conidiation in the dark. Eukaryot Cell 2:446–455 [View Article][PubMed]
    [Google Scholar]
  67. Mukherjee P. K., Latha J., Hadar R., Horwitz B. A. ( 2004). Role of two G-protein alpha subunits, TgaA and TgaB, in the antagonism of plant pathogens by Trichoderma virens . Appl Environ Microbiol 70:542–549 [View Article][PubMed]
    [Google Scholar]
  68. Mukherjee M., Mukherjee P. K., Kale S. P. ( 2007). cAMP signalling is involved in growth, germination, mycoparasitism and secondary metabolism in Trichoderma virens . Microbiology 153:1734–1742 [View Article][PubMed]
    [Google Scholar]
  69. Müller P., Aichinger C., Feldbrügge M., Kahmann R. ( 1999). The MAP kinase Kpp2 regulates mating and pathogenic development in Ustilago maydis . Mol Microbiol 34:1007–1017 [View Article][PubMed]
    [Google Scholar]
  70. Neill S. J., Desikan R., Clarke A., Hurst R. D., Hancock J. T. ( 2002). Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot 53:1237–1247 [View Article][PubMed]
    [Google Scholar]
  71. Nemcovic M., Jakubíková L., Víden I., Farkas V. ( 2008). Induction of conidiation by endogenous volatile compounds in Trichoderma spp. FEMS Microbiol Lett 284:231–236 [View Article][PubMed]
    [Google Scholar]
  72. Peñalva M. A., Arst H. N. Jr ( 2002). Regulation of gene expression by ambient pH in filamentous fungi and yeasts. Microbiol Mol Biol Rev 66:426–446 [View Article][PubMed]
    [Google Scholar]
  73. Peñalva M. A., Arst H. N. Jr ( 2004). Recent advances in the characterization of ambient pH regulation of gene expression in filamentous fungi and yeasts. Annu Rev Microbiol 58:425–451 [View Article][PubMed]
    [Google Scholar]
  74. Reinheckel T., Sitte N., Ullrich O., Kuckelkorn U., Davies K. J. A., Grune T. ( 1998). Comparative resistance of the 20S and 26S proteasome to oxidative stress. Biochem J 335:637–642[PubMed]
    [Google Scholar]
  75. Reithner B., Brunner K., Schuhmacher R., Peissl I., Seidl V., Krska R., Zeilinger S. ( 2005). The G protein α subunit Tga1 of Trichoderma atroviride is involved in chitinase formation and differential production of antifungal metabolites. Fungal Genet Biol 42:749–760 [View Article][PubMed]
    [Google Scholar]
  76. Reithner B., Schuhmacher R., Stoppacher N., Pucher M., Brunner K., Zeilinger S. ( 2007). Signaling via the Trichoderma atroviride mitogen-activated protein kinase Tmk 1 differentially affects mycoparasitism and plant protection. Fungal Genet Biol 44:1123–1133 [View Article][PubMed]
    [Google Scholar]
  77. Rocha-Ramirez V., Omero C., Chet I., Horwitz B. A., Herrera-Estrella A. ( 2002). Trichoderma atroviride G-protein α-subunit gene tga1 is involved in mycoparasitic coiling and conidiation. Eukaryot Cell 1:594–605 [View Article][PubMed]
    [Google Scholar]
  78. Rosales-Saavedra T., Esquivel-Naranjo E. U., Casas-Flores S., Martínez-Hernández P., Ibarra-Laclette E., Cortes-Penagos C., Herrera-Estrella A. ( 2006). Novel light-regulated genes in Trichoderma atroviride: a dissection by cDNA microarrays. Microbiology 152:3305–3317 [View Article][PubMed]
    [Google Scholar]
  79. Rosén S., Yu J. H., Adams T. H. ( 1999). The Aspergillus nidulans sfaD gene encodes a G protein βsubunit that is required for normal growth and repression of sporulation. EMBO J 18:5592–5600 [View Article][PubMed]
    [Google Scholar]
  80. Roze L. V., Chanda A., Laivenieks M., Beaudry R. M., Artymovich K. A., Koptina A. V., Awad D. W., Valeeva D., Jones A. D., Linz J. E. ( 2010). Volatile profiling reveals intracellular metabolic changes in Aspergillus parasiticus: veA regulates branched chain amino acid and ethanol metabolism. BMC Biochem 11:33 [View Article][PubMed]
    [Google Scholar]
  81. Samuels G. J. ( 1996). Trichoderma: a review of biology and systematics of the genus. Mycol Res 100:923–935 [View Article]
    [Google Scholar]
  82. Schmoll M., Zeilinger S., Mach R. L., Kubicek C. P. ( 2004). Cloning of genes expressed early during cellulase induction in Hypocrea jecorina by a rapid subtraction hybridization approach. Fungal Genet Biol 41:877–887 [View Article][PubMed]
    [Google Scholar]
  83. Schmoll M., Franchi L., Kubicek C. P. ( 2005). Envoy, a PAS/LOV domain protein of Hypocrea jecorina (anamorph Trichoderma reesei), modulates cellulase gene transcription in response to light. Eukaryot Cell 4:1998–2007 [View Article][PubMed]
    [Google Scholar]
  84. Schmoll M., Schuster A., Silva R. N., Kubicek C. P. ( 2009). The G-alpha protein GNA3 of Hypocrea jecorina (anamorph Trichoderma reesei) regulates cellulase gene expression in the presence of light. Eukaryot Cell 8:410–420 [View Article][PubMed]
    [Google Scholar]
  85. Schnürer J., Olsson J., Börjesson T. ( 1999). Fungal volatiles as indicators of food and feeds spoilage. Fungal Genet Biol 27:209–217 [View Article][PubMed]
    [Google Scholar]
  86. Schwerdtfeger C., Linden H. ( 2003). VIVID is a flavoprotein and serves as a fungal blue light photoreceptor for photoadaptation. EMBO J 22:4846–4855 [View Article][PubMed]
    [Google Scholar]
  87. Scott B., Eaton C. J. ( 2008). Role of reactive oxygen species in fungal cellular differentiations. Curr Opin Microbiol 11:488–493 [CrossRef]
    [Google Scholar]
  88. Segmüller N., Kokkelink L., Giesbert S., Odinius D., van Kan J., Tudzynski P. ( 2008). NADPH oxidases are involved in differentiation and pathogenicity in Botrytis cinerea . Mol Plant Microbe Interact 21:808–819 [View Article][PubMed]
    [Google Scholar]
  89. Seibel C., Gremel G., do Nascimento Silva R., Schuster A., Kubicek C. P., Schmoll M. ( 2009). Light-dependent roles of the G-protein αsubunit GNA1 of Hypocrea jecorina (anamorph Trichoderma reesei). BMC Biol 7:58 [View Article][PubMed]
    [Google Scholar]
  90. Semighini C. P., Harris S. D. ( 2008). Regulation of apical dominance in Aspergillus nidulans hyphae by reactive oxygen species. Genetics 179:1919–1932 [View Article][PubMed]
    [Google Scholar]
  91. Šimkovič M., Ditte P., Kurucová A., Lakatos B., Varecka L. ( 2008). Ca2+-dependent induction of conidiation in submerged cultures of Trichoderma viride . Can J Microbiol 54:291–298 [View Article][PubMed]
    [Google Scholar]
  92. Steyaert J. M., Weld R. J., Mendoza-Mendoza A., Stewart A. ( 2010a). Reproduction without sex: conidiation in the filamentous fungus Trichoderma . Microbiology 156:2887–2900 [View Article][PubMed]
    [Google Scholar]
  93. Steyaert J. M., Weld R. J., Stewart A. ( 2010b). Ambient pH intrinsically influences Trichoderma conidiation and colony morphology. Fungal Biol 114:198–208 [View Article][PubMed]
    [Google Scholar]
  94. Steyaert J. M., Weld R. J., Stewart A. ( 2010c). Isolate-specific conidiation in Trichoderma in response to different nitrogen sources. Fungal Biol 114:179–188 [View Article][PubMed]
    [Google Scholar]
  95. Stinnett S. M., Espeso E. A., Cobeño L., Araújo-Bazán L., Calvo A. M. ( 2007). Aspergillus nidulans VeA subcellular localization is dependent on the importin αcarrier and on light. Mol Microbiol 63:242–255 [View Article][PubMed]
    [Google Scholar]
  96. Stoppacher N., Kluger B., Zeilinger S., Krska R., Schuhmacher R. ( 2010). Identification and profiling of volatile metabolites of the biocontrol fungus Trichoderma atroviride by HS-SPME-GC-MS. J Microbiol Methods 81:187–193 [View Article][PubMed]
    [Google Scholar]
  97. Takano Y., Kikuchi T., Kubo Y., Hamer J. E., Mise K., Furusawa I. ( 2000). The Colletotrichum lagenarium MAP kinase gene CMK1 regulates diverse aspects of fungal pathogenesis. Mol Plant Microbe Interact 13:374–383 [View Article][PubMed]
    [Google Scholar]
  98. Takemoto D., Tanaka A., Scott B. ( 2007). NADPH oxidases in fungi: diverse roles of reactive oxygen species in fungal cellular differentiation. Fungal Genet Biol 44:1065–1076 [View Article][PubMed]
    [Google Scholar]
  99. Tisch D., Kubicek C. P., Schmoll M. ( 2011). New insights into the mechanism of light modulated signaling by heterotrimeric G-proteins: ENVOY acts on gna1 and gna3 and adjusts cAMP levels in Trichoderma reesei (Hypocrea jecorina). Fungal Genet Biol 48:631–640 [View Article][PubMed]
    [Google Scholar]
  100. Toledo I., Aguirre J., Hansberg W. ( 1994). Enzyme inactivation related to a hyperoxidant state during conidiation of Neurospora crassa . Microbiology 140:2391–2397 [View Article][PubMed]
    [Google Scholar]
  101. Wheatley R., Hackett C., Bruce A., Kundzewicz A. ( 1997). Effect of substrate composition on production of volatile organic compounds from Trichoderma spp. inhibitory to wood decay fungi. Int Biodeterior Biodegradation 39:199–205 [View Article]
    [Google Scholar]
  102. Xu J. R. ( 2000). Map kinases in fungal pathogens. Fungal Genet Biol 31:137–152 [View Article][PubMed]
    [Google Scholar]
  103. Xu J. R., Hamer J. E. ( 1996). MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea . Genes Dev 10:2696–2706 [View Article][PubMed]
    [Google Scholar]
  104. Yang Q., Poole S. I., Borkovich K. A. ( 2002). A G-protein βsubunit required for sexual and vegetative development and maintenance of normal Gα protein levels in Neurospora crassa . Eukaryot Cell 1:378–390 [View Article][PubMed]
    [Google Scholar]
  105. Yu J.-H. ( 2010). Regulation of development in Aspergillus nidulans and Aspergillus fumigatus . Mycobiology 38:229–237 [View Article]
    [Google Scholar]
  106. Yu J. H., Mah J. H., Seo J. A. ( 2006). Growth and developmental control in the model and pathogenic aspergilli. Eukaryot Cell 5:1577–1584 [View Article][PubMed]
    [Google Scholar]
  107. Zeilinger S., Reithner B., Scala V., Peissl I., Lorito M., Mach R. L. ( 2005). Signal transduction by Tga3, a novel G protein α subunit of Trichoderma atroviride . Appl Environ Microbiol 71:1591–1597 [View Article][PubMed]
    [Google Scholar]
  108. Zheng L., Campbell M., Murphy J., Lam S., Xu J. R. ( 2000). The BMP1 gene is essential for pathogenicity in the gray mold fungus Botrytis cinerea . Mol Plant Microbe Interact 13:724–732 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.052688-0
Loading
/content/journal/micro/10.1099/mic.0.052688-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error