1887

Abstract

The 120 kDa protein adhesin (AP120) is induced under iron-rich conditions and has sequence homology with pyruvate : ferredoxin oxidoreductase A (PFO A), a hydrogenosomal enzyme that is absent in humans. This homology raises the possibility that, like AP120, PFO might be localized to the parasite surface and participate in cytoadherence. Here, the cellular localization and function of PFO that was expressed under various iron concentrations was investigated using a polyclonal antibody generated against the 50 kDa recombinant C-terminal region of PFO A (anti-PFO50). In Western blot assays, this antibody recognized a 120 kDa protein band in total protein extracts, and proteins with affinity to the surface of HeLa cells from parasites grown under iron-rich conditions. In addition to localization that is typical of hydrogenosomal proteins, PFOs that were expressed under iron-rich conditions were found to localize at the surface. This localization was demonstrated using immunofluorescence and co-localization assays, as well as immunogold transmission electron microscopy. In addition to describing its enzyme activity, we describe a novel function in trichomonal host interaction for the PFO localized on the parasite surface. The anti-PFO50 antibody reduced the levels of adherence to HeLa cell monolayers in a concentration-dependent manner. Thus, PFO is an example of a surface-associated cell-binding protein that lacks enzyme activity and that is involved in cytoadherence. Additionally, PFO behaves like AP120 in parasites grown under iron-rich conditions. Therefore, these data suggest that AP120 and PFO A are encoded by the same gene, namely

Funding
This study was supported by the:
  • Department of Infectomics and Molecular Pathogenesis
  • CINVESTAV-IPN (Award 68949, 58611 and 33044 M)
  • CONACYT-México
  • Instituto de Ciencia y Tecnología del D.F (Award ICyT-299)
  • CONACYT-México
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.053033-0
2011-12-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/12/3469.html?itemId=/content/journal/micro/10.1099/mic.0.053033-0&mimeType=html&fmt=ahah

References

  1. Alderete J. F., Garza G. E. ( 1985). Specific nature of Trichomonas vaginalis parasitism of host cell surfaces. Infect Immun 50:701–708[PubMed]
    [Google Scholar]
  2. Alderete J. F., Garza G. E. ( 1988). Identification and properties of Trichomonas vaginalis proteins involved in cytadherence. Infect Immun 56:28–33[PubMed]
    [Google Scholar]
  3. Alderete J. F., O’Brien J. L., Arroyo R., Engbring J. A., Musatovova O., Lopez O., Lauriano C., Nguyen J. ( 1995). Cloning and molecular characterization of two genes encoding adhesion proteins involved in Trichomonas vaginalis cytoadherence. Mol Microbiol 17:69–83 [View Article][PubMed]
    [Google Scholar]
  4. Alderete J. F., Engbring J., Lauriano C. M., O’Brien J. L. ( 1998). Only two of the Trichomonas vaginalis triplet AP51 adhesins are regulated by iron. Microb Pathog 24:1–16 [View Article][PubMed]
    [Google Scholar]
  5. Alderete J. F., Millsap K. W., Lehker M. W., Benchimol M. ( 2001). Enzymes on microbial pathogens and Trichomonas vaginalis: molecular mimicry and functional diversity. Cell Microbiol 3:359–370 [View Article][PubMed]
    [Google Scholar]
  6. Alvarez-Sánchez M. E., Solano-González E., Yañez-Gómez C., Arroyo R. ( 2007). Negative iron regulation of the CP65 cysteine proteinase cytotoxicity in Trichomonas vaginalis . Microbes Infect 9:1597–1605 [View Article][PubMed]
    [Google Scholar]
  7. Arroyo R., Alderete J. F. ( 1989). Trichomonas vaginalis surface proteinase activity is necessary for parasite adherence to epithelial cells. Infect Immun 57:2991–2997[PubMed]
    [Google Scholar]
  8. Arroyo R., Alderete J. F. ( 1995). Two Trichomonas vaginalis surface proteinases bind to host epithelial cells and are related to levels of cytoadherence and cytotoxicity. Arch Med Res 26:279–285[PubMed]
    [Google Scholar]
  9. Arroyo R., Engbring J., Alderete J. F. ( 1992). Molecular basis of host epithelial cell recognition by Trichomonas vaginalis . Mol Microbiol 6:853–862 [View Article][PubMed]
    [Google Scholar]
  10. Arroyo R., González-Robles A., Martínez-Palomo A., Alderete J. F. ( 1993). Signalling of Trichomonas vaginalis for amoeboid transformation and adhesion synthesis follows cytoadherence. Mol Microbiol 7:299–309 [View Article][PubMed]
    [Google Scholar]
  11. Arroyo R., Engbring J., Nguyen J., Musatovova O., López O., Lauriano C., Alderete J. F. ( 1995). Characterization of cDNAs encoding adhesin proteins involved in Trichomonas vaginalis cytoadherence. Arch Med Res 26:361–369[PubMed]
    [Google Scholar]
  12. Bastida-Corcuera F. D., Okumura C. Y., Colocoussi A., Johnson P. J. ( 2005). Trichomonas vaginalis lipophosphoglycan mutants have reduced adherence and cytotoxicity to human ectocervical cells. Eukaryot Cell 4:1951–1958 [View Article][PubMed]
    [Google Scholar]
  13. Benchimol M. ( 1999). Hydrogenosome autophagy: an ultrastructural and cytochemical study. Biol Cell 91:165–174 [View Article][PubMed]
    [Google Scholar]
  14. Bradley P. J., Lahti C. J., Plümper E., Johnson P. J. ( 1997). Targeting and translocation of proteins into the hydrogenosome of the protist Trichomonas: similarities with mitochondrial protein import. EMBO J 16:3484–3493 [View Article][PubMed]
    [Google Scholar]
  15. Brennand A., Gualdrón-López M., Coppens I., Rigden D. J., Ginger M. L., Michels P. A. M. ( 2011). Autophagy in parasitic protists: unique features and drug targets. Mol Biochem Parasitol 177:83–99 [View Article][PubMed]
    [Google Scholar]
  16. Bui E. T., Johnson P. J. ( 1996). Identification and characterization of [Fe]-hydrogenases in the hydrogenosome of Trichomonas vaginalis . Mol Biochem Parasitol 76:305–310 [View Article][PubMed]
    [Google Scholar]
  17. Carlton J. M., Hirt R. P., Silva J. C., Delcher A. L., Schatz M., Zhao Q., Wortman J. R., Bidwell S. L., Alsmark U. C. et al. & other authors ( 2007). Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis . Science 315:207–212 [View Article][PubMed]
    [Google Scholar]
  18. Carlton J. M., Malik Sh. B., Sullivan S. A., Sicheritz-Ponten T., Tang P., Hirt R. P. ( 2010). The genome of Trichomonas vaginalis . Anaerobic Parasitic Protozoa (Genomics and Molecular Biology)45–80 Clark C. G., Johnson P. J., Adam R. D. Norfolk, UK: Caister Academic Press;
    [Google Scholar]
  19. Collingridge P. W., Brown R. W. B., Ginger M. L. ( 2010). Moonlighting enzymes in parasitic protozoa. Parasitology 137:1467–1475 [View Article][PubMed]
    [Google Scholar]
  20. Diamond L. S. ( 1957). The establishment of various trichomonads of animals and man in axenic cultures. J Parasitol 43:488–490 [View Article][PubMed]
    [Google Scholar]
  21. Dyall S. D., Koehler C. M., Delgadillo-Correa M. G., Bradley P. J., Plümper E., Leuenberger D., Turck C. W., Johnson P. J. ( 2000). Presence of a member of the mitochondrial carrier family in hydrogenosomes: conservation of membrane-targeting pathways between hydrogenosomes and mitochondria. Mol Cell Biol 20:2488–2497 [CrossRef]
    [Google Scholar]
  22. Engbring J. A., Alderete J. F. ( 1998a). Three genes encode distinct AP33 proteins involved in Trichomonas vaginalis cytoadherence. Mol Microbiol 28:305–313 [View Article][PubMed]
    [Google Scholar]
  23. Engbring J. A., Alderete J. F. ( 1998b). Characterization of Trichomonas vaginalis AP33 adhesin and cell surface interactive domains. Microbiology 144:3011–3018 [View Article][PubMed]
    [Google Scholar]
  24. Engbring J. A., O’Brien J. L., Alderete J. F. ( 1996). Trichomonas vaginalis adhesin proteins display molecular mimicry to metabolic enzymes. Adv Exp Med Biol 408:207–223 [View Article][PubMed]
    [Google Scholar]
  25. Garcia A. F., Chang T. H., Benchimol M., Klumpp D. J., Lehker M. W., Alderete J. F. ( 2003). Iron and contact with host cells induce expression of adhesins on surface of Trichomonas vaginalis . Mol Microbiol 47:1207–1224 [View Article][PubMed]
    [Google Scholar]
  26. Gorrell T. E. ( 1985). Effect of culture medium iron content on the biochemical composition and metabolism of Trichomonas vaginalis . J Bacteriol 161:1228–1230[PubMed]
    [Google Scholar]
  27. Harlow E., Lane E. ( 1988). Antibodies: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  28. Herman M., Pérez-Morga D., Schtickzelle N., Michels P. A. ( 2008). Turnover of glycosomes during life-cycle differentiation of Trypanosoma brucei . Autophagy 4:294–308[PubMed] [CrossRef]
    [Google Scholar]
  29. Hernández H., Sariego I., Garber G., Delgado R., López O., Sarracent J. ( 2004). Monoclonal antibodies against a 62 kDa proteinase of Trichomonas vaginalis decrease parasite cytoadherence to epithelial cells and confer protection in mice. Parasite Immunol 26:119–125 [View Article][PubMed]
    [Google Scholar]
  30. Hirt R. P., Noël C. J., Sicheritz-Ponten T., Tachezy J., Fiori P.-L. ( 2007). Trichomonas vaginalis surface proteins: a view from the genome. Trends Parasitol 23:540–547 [View Article][PubMed]
    [Google Scholar]
  31. Hrdý I., Müller M. ( 1995). Primary structure and eubacterial relationships of the pyruvate : ferredoxin oxidoreductase of the amitochondriate eukaryote Trichomonas vaginalis . J Mol Evol 41:388–396 [View Article][PubMed]
    [Google Scholar]
  32. Huberts D. H. E. W., van der Klei I. J. ( 2010). Moonlighting proteins: an intriguing mode of multitasking. Biochim Biophys Acta 1803:520–525 [View Article][PubMed]
    [Google Scholar]
  33. Jeffery C. J. ( 1999). Moonlighting proteins. Trends Biochem Sci 24:8–11 [View Article][PubMed]
    [Google Scholar]
  34. Jeffery C. J. ( 2003). Moonlighting proteins: old proteins learning new tricks. Trends Genet 19:415–417 [View Article][PubMed]
    [Google Scholar]
  35. Jeffery C. J. ( 2005). Mass spectrometry and the search for moonlighting proteins. Mass Spectrom Rev 24:772–782 [View Article][PubMed]
    [Google Scholar]
  36. Jeffery C. J. ( 2009). Moonlighting proteins – an update. Mol Biosyst 5:345–350 [View Article][PubMed]
    [Google Scholar]
  37. Lahti C. J., Johnson P. J. ( 1991). Trichomonas vaginalis hydrogenosomal proteins are synthesized on free polyribosomes and may undergo processing upon maturation. Mol Biochem Parasitol 46:307–310 [View Article][PubMed]
    [Google Scholar]
  38. Lama A., Kucknoor A., Mundodi V., Alderete J. F. ( 2009). Glyceraldehyde-3-phosphate dehydrogenase is a surface-associated, fibronectin-binding protein of Trichomonas vaginalis . Infect Immun 77:2703–2711 [View Article][PubMed]
    [Google Scholar]
  39. Lehker M. W., Arroyo R., Alderete J. F. ( 1991). The regulation by iron of the synthesis of adhesins and cytoadherence levels in the protozoan Trichomonas vaginalis . J Exp Med 174:311–318 [View Article][PubMed]
    [Google Scholar]
  40. León-Sicairos C. R., León-Félix J., Arroyo R. ( 2004). tvcp12: a novel Trichomonas vaginalis cathepsin L-like cysteine proteinase-encoding gene. Microbiology 150:1131–1138 [View Article][PubMed]
    [Google Scholar]
  41. Mendoza-López M. R., Becerril-Garcia C., Fattel-Facenda L. V., Ávila-Gonzalez L., Ruíz-Tachiquín M. E., Ortega-Lopez J., Arroyo R. ( 2000). CP30, a cysteine proteinase involved in Trichomonas vaginalis cytoadherence. Infect Immun 68:4907–4912 [View Article][PubMed]
    [Google Scholar]
  42. Mentel M., Zimorski V., Haferkamp P., Martin W., Henze K. ( 2008). Protein import into hydrogenosomes of Trichomonas vaginalis involves both N-terminal and internal targeting signals: a case study of thioredoxin reductases. Eukaryot Cell 7:1750–1757 [View Article][PubMed]
    [Google Scholar]
  43. Moreno-Brito V., Yáñez-Gómez C., Meza-Cervantez P., Avila-González L., Rodríguez M. A., Ortega-López J., González-Robles A., Arroyo R. ( 2005). A Trichomonas vaginalis 120 kDa protein with identity to hydrogenosome pyruvate : ferredoxin oxidoreductase is a surface adhesin induced by iron. Cell Microbiol 7:245–258 [View Article][PubMed]
    [Google Scholar]
  44. Mundodi V., Kucknoor A. S., Alderete J. F. ( 2008). Immunogenic and plasminogen-binding surface-associated α-enolase of Trichomonas vaginalis . Infect Immun 76:523–531 [View Article][PubMed]
    [Google Scholar]
  45. Noël C. J., Diaz N., Sicheritz-Ponten T., Safarikova L., Tachezy J., Tang P., Fiori P. L., Hirt R. P. ( 2010). Trichomonas vaginalis vast BspA-like gene family: evidence for functional diversity from structural organisation and transcriptomics. BMC Genomics 11:99–125 [View Article][PubMed]
    [Google Scholar]
  46. Opperdoes F. R., Baudhuin P., Coppens I., De Roe C., Edwards S. W., Weijers P. J., Misset O. ( 1984). Purification, morphometric analysis, and characterization of the glycosomes (microbodies) of the protozoan hemoflagellate Trypanosoma brucei . J Cell Biol 98:1178–1184 [View Article][PubMed]
    [Google Scholar]
  47. Pal-Bhowmick I., Mehta M., Coppens I., Sharma S., Jarori G. K. ( 2007). Protective properties and surface localization of Plasmodium falciparum enolase. Infect Immun 75:5500–5508 [View Article][PubMed]
    [Google Scholar]
  48. Pineda E., Encalada R., Rodríguez-Zavala J. S., Olivos-García A., Moreno-Sánchez R., Saavedra E. ( 2010). Pyruvate : ferredoxin oxidoreductase and bifunctional aldehyde-alcohol dehydrogenase are essential for energy metabolism under oxidative stress in Entamoeba histolytica . FEBS J 277:3382–3395[PubMed] [CrossRef]
    [Google Scholar]
  49. Pomel S., Luk F. C. Y., Beckers C. J. M. ( 2008). Host cell egress and invasion induce marked relocations of glycolytic enzymes in Toxoplasma gondii tachyzoites. PLoS Pathog 4:e1000188 [View Article][PubMed]
    [Google Scholar]
  50. Ramón-Luing L. A., Rendón-Gandarilla F. J., Cárdenas-Guerra R. E., Rodríguez-Cabrera N. A., Ortega-López J., Avila-González L., Angel-Ortiz C., Herrera-Sánchez C. N., Mendoza-García M., Arroyo R. ( 2010). Immunoproteomics of the active degradome to identify biomarkers for Trichomonas vaginalis . Proteomics 10:435–444 [View Article][PubMed]
    [Google Scholar]
  51. Ramos-Martínez E., Olivos-García A., Saavedra E., Nequiz M., Sánchez E. C., Tello E., El-Hafidi M., Saralegui A., Pineda E. et al. & other authors ( 2009). Entamoeba histolytica: oxygen resistance and virulence. Int J Parasitol 39:693–702 [View Article][PubMed]
    [Google Scholar]
  52. Redlitz A., Fowler B. J., Plow E. F., Miles L. A. ( 1995). The role of an enolase-related molecule in plasminogen binding to cells. Eur J Biochem 227:407–415 [View Article][PubMed]
    [Google Scholar]
  53. Rodríguez M. A., García-Pérez R. M., Mendoza L., Sánchez T., Guillen N., Orozco E. ( 1998). The pyruvate : ferredoxin oxidoreductase enzyme is located in the plasma membrane and in a cytoplasmic structure in Entamoeba . Microb Pathog 25:1–10 [View Article][PubMed]
    [Google Scholar]
  54. Saavedra E., Encalada R., Pineda E., Jasso-Chávez R., Moreno-Sánchez R. ( 2005). Glycolysis in Entamoeba histolytica. Biochemical characterization of recombinant glycolytic enzymes and flux control analysis. FEBS J 272:1767–1783 [View Article][PubMed]
    [Google Scholar]
  55. Saavedra E., Marín-Hernández A., Encalada R., Olivos A., Mendoza-Hernández G., Moreno-Sánchez R. ( 2007). Kinetic modeling can describe in vivo glycolysis in Entamoeba histolytica . FEBS J 274:4922–4940 [View Article][PubMed]
    [Google Scholar]
  56. Sanger F., Nicklen S., Coulson A. R. ( 1977). DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467 [View Article][PubMed]
    [Google Scholar]
  57. Schwebke J. R., Burgess D. ( 2004). Trichomoniasis. Clin Microbiol Rev 17:794–803 [View Article][PubMed]
    [Google Scholar]
  58. Solano-González E., Alvarez-Sánchez M. E., Avila-González L., Rodríguez-Vargas V. H., Arroyo R., Ortega-López J. ( 2006). Location of the cell-binding domain of CP65, a 65 kDa cysteine proteinase involved in Trichomonas vaginalis cytotoxicity. Int J Biochem Cell Biol 38:2114–2127 [View Article][PubMed]
    [Google Scholar]
  59. Solano-González E., Burrola-Barraza E., León-Sicairos C., Avila-González L., Gutiérrez-Escolano L., Ortega-López J., Arroyo R. ( 2007). The trichomonad cysteine proteinase TVCP4 transcript contains an iron-responsive element. FEBS Lett 581:2919–2928 [View Article][PubMed]
    [Google Scholar]
  60. Thammapalerd N., Kotimanusvanij D., Duchene M., Upcroft J. A., Mitchell R., Healey A., Samarawickrema N., Tharavanij S., Wiedermann G., Upcroft P. ( 1996). Pyruvate : ferredoxin oxidoreductase from Entamoeba histolytica recognised by a monoclonal antibody. Southeast Asian J Trop Med Public Health 27:63–70
    [Google Scholar]
  61. Upcroft J. A., Delgadillo-Correa M. G., Dunne R. L., Sturm A. W., Johnson P. J., Upcroft P. ( 2006). Genotyping Trichomonas vaginalis . Int J Parasitol 36:821–828 [View Article][PubMed]
    [Google Scholar]
  62. Vanácová S., Rasoloson D., Rázga J., Hrdý I., Kulda J., Tachezy J. ( 2001). Iron-induced changes in pyruvate metabolism of Tritrichomonas foetus and involvement of iron in expression of hydrogenosomal proteins. Microbiology 147:53–62[PubMed]
    [Google Scholar]
  63. Williams K., Lowe P. N., Leadlay P. F. ( 1987). Purification and characterization of pyruvate : ferredoxin oxidoreductase from the anaerobic protozoon Trichomonas vaginalis . Biochem J 246:529–536[PubMed]
    [Google Scholar]
  64. Wu G., Henze K., Müller M. ( 2001). Evolutionary relationships of the glucokinase from the amitochondriate protist, Trichomonas vaginalis . Gene 264:265–271 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.053033-0
Loading
/content/journal/micro/10.1099/mic.0.053033-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error