1887

Abstract

The two-component regulatory system CiaRH of affects β-lactam susceptibility, autolysis, bacteriocin production, competence development, host colonization and virulence. The system was discovered in a screen for R6 mutants resistant to the β-lactam antibiotic cefotaxime. A mutation in the histidine kinase gene led to this phenotype by enhancing CiaR-mediated gene expression. Additional mutations in have been described in other spontaneous β-lactam-resistant mutants of . R6, but their influence on CiaR-mediated gene regulation has not been determined. Likewise, altered alleles are present in clinical isolates, none of which had been characterized. These novel variants were introduced into R6 to measure their ability to activate CiaR-dependent regulation. The alleles from spontaneous mutants obtained in the laboratory increased the activity of CiaR-dependent promoters between four- and 26-fold, while variants from clinical strains were less effective, with a threefold activation at most. Accordingly, phenotypes associated with a hyperactive CiaRH system, β-lactam resistance, and prevention of competence development, were far more pronounced in the laboratory mutants. Amino acid changes affecting CiaH function were positioned throughout the protein. Five of the most activating changes are located close to the conserved histidine and one in the extracytoplasmic sensor domain. The characterization of new alleles of expands the spectrum of CiaH variants, which may help to elucidate signal transduction of this important regulatory system. Our study also demonstrates that alleles overstimulating CiaR regulon expression are present in clinical isolates of .

Funding
This study was supported by the:
  • European Union (Award Pneumopath HEALTH-F3-2009-222983)
  • Deutsche Forschungsgemeinschaft (Award DFG-BR974/5-1)
  • Stipendienstiftung Rheinland-Pfalz
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.053157-0
2011-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/11/3104.html?itemId=/content/journal/micro/10.1099/mic.0.053157-0&mimeType=html&fmt=ahah

References

  1. Alloing G., Granadel C., Morrison D. A., Claverys J. P. ( 1996). Competence pheromone, oligopeptide permease, and induction of competence in Streptococcus pneumoniae. . Mol Microbiol 21:471–478 [View Article][PubMed]
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. ( 1990). Basic local alignment search tool. J Mol Biol 215:403–410[PubMed] [CrossRef]
    [Google Scholar]
  3. Casino P., Rubio V., Marina A. ( 2010). The mechanism of signal transduction by two-component systems. Curr Opin Struct Biol 20:763–771 [View Article][PubMed]
    [Google Scholar]
  4. Chen J. Y., Fung C. P., Chang F. Y., Huang L. Y., Chang J. C., Siu L. K. ( 2004). Mutations of the rpoB gene in rifampicin-resistant Streptococcus pneumoniae in Taiwan. J Antimicrob Chemother 53:375–378 [View Article][PubMed]
    [Google Scholar]
  5. Claverys J. P., Lacks S. A. ( 1986). Heteroduplex deoxyribonucleic acid base mismatch repair in bacteria. Microbiol Rev 50:133–165[PubMed]
    [Google Scholar]
  6. Croucher N. J., Walker D., Romero P., Lennard N., Paterson G. K., Bason N. C., Mitchell A. M., Quail M. A., Andrew P. W. et al. & other authors ( 2009). Role of conjugative elements in the evolution of the multidrug-resistant pandemic clone Streptococcus pneumoniae Spain23F ST81. J Bacteriol 191:1480–1489 [View Article][PubMed]
    [Google Scholar]
  7. Dagkessamanskaia A., Moscoso M., Hénard V., Guiral S., Overweg K., Reuter M., Martin B., Wells J., Claverys J. P. ( 2004). Interconnection of competence, stress and CiaR regulons in Streptococcus pneumoniae: competence triggers stationary phase autolysis of ciaR mutant cells. Mol Microbiol 51:1071–1086 [View Article][PubMed]
    [Google Scholar]
  8. Ding F., Tang P., Hsu M. H., Cui P., Hu S., Yu J., Chiu C. H. ( 2009). Genome evolution driven by host adaptations results in a more virulent and antimicrobial-resistant Streptococcus pneumoniae serotype 14. BMC Genomics 10:158 [View Article][PubMed]
    [Google Scholar]
  9. Forst S. A., Roberts D. L. ( 1994). Signal transduction by the EnvZ-OmpR phosphotransfer system in bacteria. Res Microbiol 145:363–373 [View Article][PubMed]
    [Google Scholar]
  10. Gao R., Stock A. M. ( 2009). Biological insights from structures of two-component proteins. Annu Rev Microbiol 63:133–154 [View Article][PubMed]
    [Google Scholar]
  11. Giammarinaro P., Sicard M., Gasc A. M. ( 1999). Genetic and physiological studies of the CiaH-CiaR two-component signal-transducing system involved in cefotaxime resistance and competence of Streptococcus pneumoniae . Microbiology 145:1859–1869 [View Article][PubMed]
    [Google Scholar]
  12. Guenzi E., Gasc A. M., Sicard M. A., Hakenbeck R. ( 1994). A two-component signal-transducing system is involved in competence and penicillin susceptibility in laboratory mutants of Streptococcus pneumoniae . Mol Microbiol 12:505–515 [View Article][PubMed]
    [Google Scholar]
  13. Hakenbeck R., Martin C., Dowson C., Grebe T. ( 1994). Penicillin-binding protein 2b of Streptococcus pneumoniae in piperacillin-resistant laboratory mutants. J Bacteriol 176:5574–5577[PubMed]
    [Google Scholar]
  14. Halfmann A., Kovács M., Hakenbeck R., Brückner R. ( 2007). Identification of the genes directly controlled by the response regulator CiaR in Streptococcus pneumoniae: five out of 15 promoters drive expression of small non-coding RNAs. Mol Microbiol 66:110–126 [View Article][PubMed]
    [Google Scholar]
  15. Halfmann A., Schnorpfeil A., Müller M., Marx P., Günzler U., Hakenbeck R., Brückner R. ( 2011). Activity of the two-component regulatory system CiaRH in Streptococcus pneumoniae R6. J Mol Microbiol Biotechnol 20:96–104 [View Article][PubMed]
    [Google Scholar]
  16. Hiller N. L., Janto B., Hogg J. S., Boissy R., Yu S., Powell E., Keefe R., Ehrlich N. E., Shen K. et al. & other authors ( 2007). Comparative genomic analyses of seventeen Streptococcus pneumoniae strains: insights into the pneumococcal supragenome. J Bacteriol 189:8186–8195 [View Article]
    [Google Scholar]
  17. Hoskins J., Alborn W. E. Jr, Arnold J., Blaszczak L. C., Burgett S., DeHoff B. S., Estrem S. T., Fritz L., Fu D. J. et al. & other authors ( 2001). Genome of the bacterium Streptococcus pneumoniae strain R6. J Bacteriol 183:5709–5717 [View Article][PubMed]
    [Google Scholar]
  18. Lacks S., Hotchkiss R. D. ( 1960). A study of the genetic material determining an enzyme in Pneumococcus . Biochim Biophys Acta 39:508–518 [View Article][PubMed]
    [Google Scholar]
  19. Laible G., Hakenbeck R. ( 1987). Penicillin-binding proteins in beta-lactam-resistant laboratory mutants of Streptococcus pneumoniae . Mol Microbiol 1:355–363 [View Article][PubMed]
    [Google Scholar]
  20. Lanie J. A., Ng W. L., Kazmierczak K. M., Andrzejewski T. M., Davidsen T. M., Wayne K. J., Tettelin H., Glass J. I., Winkler M. E. ( 2007). Genome sequence of Avery’s virulent serotype 2 strain D39 of Streptococcus pneumoniae and comparison with that of unencapsulated laboratory strain R6. J Bacteriol 189:38–51 [View Article][PubMed]
    [Google Scholar]
  21. Mascher T. ( 2006). Intramembrane-sensing histidine kinases: a new family of cell envelope stress sensors in Firmicutes bacteria. FEMS Microbiol Lett 264:133–144 [View Article][PubMed]
    [Google Scholar]
  22. Mascher T., Zähner D., Merai M., Balmelle N., de Saizieu A. B., Hakenbeck R. ( 2003). The Streptococcus pneumoniae cia regulon: CiaR target sites and transcription profile analysis. J Bacteriol 185:60–70 [View Article][PubMed]
    [Google Scholar]
  23. Mascher T., Heintz M., Zähner D., Merai M., Hakenbeck R. ( 2006). The CiaRH system of Streptococcus pneumoniae prevents lysis during stress induced by treatment with cell wall inhibitors and by mutations in pbp2x involved in β-lactam resistance. J Bacteriol 188:1959–1968 [View Article][PubMed]
    [Google Scholar]
  24. Moscoso M., Claverys J. P. ( 2004). Release of DNA into the medium by competent Streptococcus pneumoniae: kinetics, mechanism and stability of the liberated DNA. Mol Microbiol 54:783–794 [View Article][PubMed]
    [Google Scholar]
  25. Moscoso M., Domenech M., García E. ( 2010). Vancomycin tolerance in clinical and laboratory Streptococcus pneumoniae isolates depends on reduced enzyme activity of the major LytA autolysin or cooperation between CiaH histidine kinase and capsular polysaccharide. Mol Microbiol 77:1052–1064[PubMed]
    [Google Scholar]
  26. Ottolenghi E., Hotchkiss R. D. ( 1962). Release of genetic transforming agent from pneumococcal cultures during growth and disintegration. J Exp Med 116:491–519 [View Article][PubMed]
    [Google Scholar]
  27. Raivio T. L., Silhavy T. J. ( 1997). Transduction of envelope stress in Escherichia coli by the Cpx two-component system. J Bacteriol 179:7724–7733[PubMed]
    [Google Scholar]
  28. Reichmann P., Varon E., Günther E., Reinert R. R., Lüttiken R., Marton A., Geslin P., Wagner J., Hakenbeck R. ( 1995). Penicillin-resistant Streptococcus pneumoniae in Germany: genetic relationship to clones from other European countries. J Med Microbiol 43:377–385 [View Article][PubMed]
    [Google Scholar]
  29. Sambrook J., Fritsch E. F., Maniatis T. ( 1989). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  30. Sebert M. E., Palmer L. M., Rosenberg M., Weiser J. N. ( 2002). Microarray-based identification of htrA, a Streptococcus pneumoniae gene that is regulated by the CiaRH two-component system and contributes to nasopharyngeal colonization. Infect Immun 70:4059–4067 [View Article][PubMed]
    [Google Scholar]
  31. Sebert M. E., Patel K. P., Plotnick M., Weiser J. N. ( 2005). Pneumococcal HtrA protease mediates inhibition of competence by the CiaRH two-component signaling system. J Bacteriol 187:3969–3979 [View Article][PubMed]
    [Google Scholar]
  32. Stewart R. C. ( 2010). Protein histidine kinases: assembly of active sites and their regulation in signaling pathways. Curr Opin Microbiol 13:133–141 [View Article][PubMed]
    [Google Scholar]
  33. Sung C. K., Li H., Claverys J. P., Morrison D. A. ( 2001). An rpsL cassette, Janus, for gene replacement through negative selection in Streptococcus pneumoniae . Appl Environ Microbiol 67:5190–5196 [View Article][PubMed]
    [Google Scholar]
  34. Tettelin H., Nelson K. E., Paulsen I. T., Eisen J. A., Read T. D., Peterson S., Heidelberg J., DeBoy R. T., Haft D. H. et al. & other authors ( 2001). Complete genome sequence of a virulent isolate of Streptococcus pneumoniae . Science 293:498–506 [View Article][PubMed]
    [Google Scholar]
  35. Tsui H. C., Mukherjee D., Ray V. A., Sham L. T., Feig A. L., Winkler M. E. ( 2010). Identification and characterization of noncoding small RNAs in Streptococcus pneumoniae serotype 2 strain D39. J Bacteriol 192:264–279 [View Article][PubMed]
    [Google Scholar]
  36. Zähner D., Kaminski K., van der Linden M., Mascher T., Meral M., Hakenbeck R. ( 2002). The ciaR/ciaH regulatory network of Streptococcus pneumoniae . J Mol Microbiol Biotechnol 4:211–216[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.053157-0
Loading
/content/journal/micro/10.1099/mic.0.053157-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error