1887

Abstract

STM815 is a β-rhizobial strain that can effectively nodulate several species of the large legume genus . Two Tn-induced mutants of this strain, KM16-22 and KM51, failed to form root nodules on , but still caused root hair deformation, which is one of the early steps of rhizobial infection. Both mutants grew well in a complex medium. However, KM16-22 could not grow on minimal medium unless a sugar and a metabolic intermediate such as pyruvate were provided, and KM51 also could not grow on minimal medium unless a sugar was added. The Tn-interrupted genes of the mutants showed strong homologies to , which encodes 2,3-biphosphoglycerate-dependent phosphoglycerate mutase (dPGM), and , which encodes fructose 1,6-bisphosphatase (FBPase). Both enzymes are known to be involved in obligate steps in carbohydrate metabolism. Enzyme assays confirmed that KM16-22 and KM51 had indeed lost dPGM and FBPase activity, respectively, whilst the activities of these enzymes were expressed normally in both free-living bacteria and symbiotic bacteroids of the parental strain STM815. Both mutants recovered their enzyme activity after the introduction of wild-type or genes, were subsequently able to use carbohydrate as a carbon source, and were able to form root nodules on and to fix nitrogen as efficiently as the parental strain. We conclude that the enzymes dPGM and FBPase are essential for the formation of a symbiosis with the host plant.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.055095-0
2012-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/4/1127.html?itemId=/content/journal/micro/10.1099/mic.0.055095-0&mimeType=html&fmt=ahah

References

  1. Banerjee P. C., Darzins A., Maitra P. K. ( 1987). Gluconeogenic mutations in Pseudomonas aeruginosa: genetic linkage between fructose-bisphosphate aldolase and phosphoglycerate kinase. J Gen Microbiol 133:1099–1107[PubMed]
    [Google Scholar]
  2. Becker J., Klopprogge C., Zelder O., Heinzle E., Wittmann C. ( 2005). Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources. Appl Environ Microbiol 71:8587–8596 [View Article][PubMed]
    [Google Scholar]
  3. Bond C. S., White M. F., Hunter W. N. ( 2001). High resolution structure of the phosphohistidine-activated form of Escherichia coli cofactor-dependent phosphoglycerate mutase. J Biol Chem 276:3247–3253 [View Article][PubMed]
    [Google Scholar]
  4. Boyer H. W., Roulland-Dussoix D. ( 1969). A complementation analysis of the restriction and modification of DNA in Escherichia coli . J Mol Biol 41:459–472 [View Article][PubMed]
    [Google Scholar]
  5. Brewin N. J. ( 1991). Development of the legume root nodule. Annu Rev Cell Biol 7:191–226 [View Article][PubMed]
    [Google Scholar]
  6. Carreras J., Bartrons R., Grisolía S. ( 1980). Vanadate inhibits 2,3-bisphosphoglycerate dependent phosphoglycerate mutases but does not affect the 2,3-bisphosphoglycerate independent phosphoglycerate mutases. Biochem Biophys Res Commun 96:1267–1273 [View Article][PubMed]
    [Google Scholar]
  7. Chen W. M., James E. K., Prescott A. R., Kierans M., Sprent J. I. ( 2003). Nodulation of Mimosa spp. by the β-proteobacterium Ralstonia taiwanensis . Mol Plant Microbe Interact 16:1051–1061 [View Article][PubMed]
    [Google Scholar]
  8. Chen W. M., de Faria S. M., Straliotto R., Pitard R. M., Simões-Araùjo J. L., Chou J. H., Chou Y. J., Barrios E., Prescott A. R. & other authors ( 2005). Proof that Burkholderia strains form effective symbioses with legumes: a study of novel Mimosa-nodulating strains from South America. Appl Environ Microbiol 71:7461–7471 [View Article][PubMed]
    [Google Scholar]
  9. de Lorenzo V., Herrero M., Jakubzik U., Timmis K. N. ( 1990). Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in Gram-negative eubacteria. J Bacteriol 172:6568–6572[PubMed]
    [Google Scholar]
  10. Donahue J. L., Bownas J. L., Niehaus W. G., Larson T. J. ( 2000). Purification and characterization of glpX-encoded fructose 1,6-bisphosphatase, a new enzyme of the glycerol 3-phosphate regulon of Escherichia coli . J Bacteriol 182:5624–5627 [View Article][PubMed]
    [Google Scholar]
  11. dos Reis F. B. Jr, Simon M. F., Gross E., Boddey R. M., Elliott G. N., Neto N. E., Loureiro Mde. F., de Queiroz L. P., Scotti M. R. & other authors ( 2010). Nodulation and nitrogen fixation by Mimosa spp. in the Cerrado and Caatinga biomes of Brazil. New Phytol 186:934–946 [View Article][PubMed]
    [Google Scholar]
  12. Dougherty M. J., Boyd J. M., Downs D. M. ( 2006). Inhibition of fructose-1,6-bisphosphatase by aminoimidazole carboxamide ribotide prevents growth of Salmonella enterica purH mutants on glycerol. J Biol Chem 281:33892–33899[PubMed] [CrossRef]
    [Google Scholar]
  13. Elliott G. N., Chen W.-M., Chou J.-H., Wang H.-C., Sheu S.-Y., Perin L., Reis V. M., Moulin L., Simon M. F. & other authors ( 2007). Burkholderia phymatum is a highly effective nitrogen-fixing symbiont of Mimosa spp. and fixes nitrogen ex planta . New Phytol 173:168–180 [CrossRef]
    [Google Scholar]
  14. Figurski D. H., Helinski D. R. ( 1979). Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans . Proc Natl Acad Sci U S A 76:1648–1652 [View Article][PubMed]
    [Google Scholar]
  15. Finan T. M., Oresnik I., Bottacin A. ( 1988). Mutants of Rhizobium meliloti defective in succinate metabolism. J Bacteriol 170:3396–3403[PubMed]
    [Google Scholar]
  16. Finan T. M., McWhinnie E., Driscoll B., Watson R. J. ( 1991). Complex symbiotic gluconeogenesis phenotypes result from gluconeogenic mutations in Rhizobium meliloti . Mol Plant Microbe Interact 4:386–392 [View Article]
    [Google Scholar]
  17. Fleischmann R. D., Adams M. D., White O., Clayton R. A., Kirkness E. F., Kerlavage A. R., Bult C. J., Tomb J. F., Dougherty B. A. & other authors ( 1995). Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512 [View Article][PubMed]
    [Google Scholar]
  18. Fothergill-Gilmore L. A., Watson H. C. ( 1989). The phosphoglycerate mutases. Adv Enzymol Relat Areas Mol Biol 62:227–313[PubMed]
    [Google Scholar]
  19. Fraenkel D. G., Horecker B. L. ( 1965). Fructose-1,6-diphosphatase and acid hexose phosphatase of Escherichia coli . J Bacteriol 90:837–842[PubMed]
    [Google Scholar]
  20. Fraser H. I., Kvaratskhelia M., White M. F. ( 1999). The two analogous phosphoglycerate mutases of Escherichia coli . FEBS Lett 455:344–348 [View Article][PubMed]
    [Google Scholar]
  21. Galperin M. Y., Jedrzejas M. J. ( 2001). Conserved core structure and active site residues in alkaline phosphatase superfamily enzymes. Proteins 45:318–324 [View Article][PubMed]
    [Google Scholar]
  22. Gibson A. H. ( 1963). Physical environment and symbiotic nitrogen fixation. I. The effect of root temperature on recently nodulated Trifolium subterraneum L. plants. Aust J Biol Sci 16:28–42
    [Google Scholar]
  23. Gibson K. E., Kobayashi H., Walker G. C. ( 2008). Molecular determinants of a symbiotic chronic infection. Annu Rev Genet 42:413–441 [View Article][PubMed]
    [Google Scholar]
  24. Graham D. E., Xu H., White R. H. ( 2002). A divergent archaeal member of the alkaline phosphatase binuclear metalloenzyme superfamily has phosphoglycerate mutase activity. FEBS Lett 517:190–194 [View Article][PubMed]
    [Google Scholar]
  25. Guerra D. G., Vertommen D., Fothergill-Gilmore L. A., Opperdoes F. R., Michels P. A. ( 2004). Characterization of the cofactor-independent phosphoglycerate mutase from Leishmania mexicana mexicana. Histidines that coordinate the two metal ions in the active site show different susceptibilities to irreversible chemical modification. Eur J Biochem 271:1798–1810 [View Article][PubMed]
    [Google Scholar]
  26. Gyaneshwar P., Hirsch A. M., Moulin L., Chen W.-M., Elliott G. N., Bontemps C., Estrada-de Los Santos P., Gross E., Dos Reis F. B. Jr & other authors ( 2011). Legume-nodulating betaproteobacteria: diversity, host range, and future prospects. Mol Plant Microbe Interact 24:1276–1288 [View Article][PubMed]
    [Google Scholar]
  27. Hasemann C. A., Istvan E. S., Uyeda K., Deisenhofer J. ( 1996). The crystal structure of the bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase reveals distinct domain homologies. Structure 4:1017–1029 [View Article][PubMed]
    [Google Scholar]
  28. Irani M. H., Maitra P. K. ( 1977). Properties of Escherichia coli mutants deficient in enzymes of glycolysis. J Bacteriol 132:398–410[PubMed]
    [Google Scholar]
  29. James E. K., Crawford R. M. M. ( 1998). Effect of oxygen availability on nitrogen fixation by two Lotus species under flooded conditions. J Exp Bot 49:599–609 [View Article]
    [Google Scholar]
  30. Jedrzejas M. J. ( 2000). Structure, function, and evolution of phosphoglycerate mutases: comparison with fructose-2,6-bisphosphatase, acid phosphatase, and alkaline phosphatase. Prog Biophys Mol Biol 73:263–287 [View Article][PubMed]
    [Google Scholar]
  31. Jules M., Le Chat L., Aymerich S., Le Coq D. ( 2009). The Bacillus subtilis ywjI (glpX) gene encodes a class II fructose-1,6-bisphosphatase, functionally equivalent to the class III Fbp enzyme. J Bacteriol 191:3168–3171 [View Article][PubMed]
    [Google Scholar]
  32. Kovach M. E., Elzer P. H., Hill D. S., Robertson G. T., Farris M. A., Roop R. M. II, Peterson K. M. ( 1995). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176 [View Article][PubMed]
    [Google Scholar]
  33. Leyva-Vazquez M. A., Setlow P. ( 1994). Cloning and nucleotide sequences of the genes encoding triose phosphate isomerase, phosphoglycerate mutase, and enolase from Bacillus subtilis . J Bacteriol 176:3903–3910[PubMed]
    [Google Scholar]
  34. Looijesteijn P. J., Boels I. C., Kleerebezem M., Hugenholtz J. ( 1999). Regulation of exopolysaccharide production by Lactococcus lactis subsp. cremoris by the sugar source. Appl Environ Microbiol 65:5003–5008[PubMed]
    [Google Scholar]
  35. Matthysse A. G., Stretton S., Dandie C., McClure N. C., Goodman A. E. ( 1996). Construction of GFP vectors for use in Gram-negative bacteria other than Escherichia coli . FEMS Microbiol Lett 145:87–94 [View Article][PubMed]
    [Google Scholar]
  36. Mckay J. A., Glenn A. R., Dilworth M. J. ( 1985). Gluconeogenesis in Rhizobium leguminosarum MNF3841. J Gen Microbiol 131:2067–2073
    [Google Scholar]
  37. Morris V. L., Jackson D. P., Grattan M., Ainsworth T., Cuppels D. A. ( 1995). Isolation and sequence analysis of the Pseudomonas syringae pv. tomato gene encoding a 2,3-diphosphoglycerate-independent phosphoglyceromutase. J Bacteriol 177:1727–1733[PubMed]
    [Google Scholar]
  38. Naderer T., Ellis M. A., Sernee M. F., De Souza D. P., Curtis J., Handman E., McConville M. J. ( 2006). Virulence of Leishmania major in macrophages and mice requires the gluconeogenic enzyme fructose-1,6-bisphosphatase. Proc Natl Acad Sci U S A 103:5502–5507 [View Article][PubMed]
    [Google Scholar]
  39. Oldroyd G. E. D., Downie J. A. ( 2008). Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519–546 [View Article][PubMed]
    [Google Scholar]
  40. Osterås M., Finan T. M., Stanley J. ( 1991). Site-directed mutagenesis and DNA sequence of pckA of Rhizobium NGR234, encoding phosphoenolpyruvate carboxykinase: gluconeogenesis and host-dependent symbiotic phenotype. Mol Gen Genet 230:257–269 [View Article][PubMed]
    [Google Scholar]
  41. Potters M. B., Solow B. T., Bischoff K. M., Graham D. E., Lower B. H., Helm R., Kennelly P. J. ( 2003). Phosphoprotein with phosphoglycerate mutase activity from the archaeon Sulfolobus solfataricus . J Bacteriol 185:2112–2121 [View Article][PubMed]
    [Google Scholar]
  42. Reutz I., Schobert P., Bowien B. ( 1982). Effect of phosphoglycerate mutase deficiency on heterotrophic and autotrophic carbon metabolism of Alcaligenes eutrophus . J Bacteriol 151:8–14[PubMed]
    [Google Scholar]
  43. Sambrook J., Fritsch E. F. ( 1989). Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  44. Sato T., Imanaka H., Rashid N., Fukui T., Atomi H., Imanaka T. ( 2004). Genetic evidence identifying the true gluconeogenic fructose-1,6-bisphosphatase in Thermococcus kodakaraensis and other hyperthermophiles. J Bacteriol 186:5799–5807 [View Article][PubMed]
    [Google Scholar]
  45. Somasegaran P., Hoben H. J. ( 1994). Handbook for Rhizobia: Methods in Legume-Rhizobium Technology New York: Springer-Verlag; [CrossRef]
    [Google Scholar]
  46. Stowers M. D. ( 1985). Carbon metabolism in Rhizobium species. Annu Rev Microbiol 39:89–108 [View Article][PubMed]
    [Google Scholar]
  47. Tatè R., Ferraioli S., Filosa S., Cermola M., Riccio A., Iaccarino M., Patriarca E. J. ( 2004). Glutamine utilization by Rhizobium etli . Mol Plant Microbe Interact 17:720–728 [View Article][PubMed]
    [Google Scholar]
  48. van der Oost J., Huynen M. A., Verhees C. H. ( 2002). Molecular characterization of phosphoglycerate mutase in archaea. FEMS Microbiol Lett 212:111–120 [View Article][PubMed]
    [Google Scholar]
  49. van Rhijn P., Vanderleyden J. ( 1995). The Rhizobium-plant symbiosis. Microbiol Rev 59:124–142[PubMed]
    [Google Scholar]
  50. Vandamme P., Goris J., Chen W. M., de Vos P., Willems A. ( 2002). Burkholderia tuberum sp. nov. and Burkholderia phymatum sp. nov. nodulate the roots of tropical legumes. Syst Appl Microbiol 25:507–512 [CrossRef]
    [Google Scholar]
  51. Vasse J. M., Truchet G. L. ( 1984). The Rhizobium–legume symbiosis: observation of root infection by bright-field microscopy after staining with methylene blue. Planta 161:487–489 [View Article]
    [Google Scholar]
  52. Vincent J. M. ( 1970). A Manual for the Practical Study of Root-Nodule Bacteria. IBP Handbook 15 Oxford: Blackwell Scientific Publications;
    [Google Scholar]
  53. Vincze E., Bowra S. ( 2006). Transformation of rhizobia with broad-host-range plasmids by using a freeze-thaw method. Appl Environ Microbiol 72:2290–2293 [View Article][PubMed]
    [Google Scholar]
  54. Watabe K., Freese E. ( 1979). Purification and properties of the manganese-dependent phosphoglycerate mutase of Bacillus subtilis . J Bacteriol 137:773–778[PubMed]
    [Google Scholar]
  55. White P. J., Nairn J., Price N. C., Nimmo H. G., Coggins J. R., Hunter I. S. ( 1992). Phosphoglycerate mutase from Streptomyces coelicolor A3(2): purification and characterization of the enzyme and cloning and sequence analysis of the gene. J Bacteriol 174:434–440[PubMed]
    [Google Scholar]
  56. Yomano L. P., Scopes R. K., Ingram L. O. ( 1993). Cloning, sequencing, and expression of the Zymomonas mobilis phosphoglycerate mutase gene (pgm) in Escherichia coli . J Bacteriol 175:3926–3933[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.055095-0
Loading
/content/journal/micro/10.1099/mic.0.055095-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error