1887

Abstract

Bacillithiol (BSH), an α-anomeric glycoside of -cysteinyl--glucosaminyl--malate, is a major low-molecular-mass thiol found in bacteria such as sp., and Like other low-molecular-mass thiols such as glutathione and mycothiol, BSH is likely to be involved in protection against environmental toxins including thiol-reactive antibiotics. We report here a BSH-dependent detoxification mechanism in . When Newman strain was treated with monobromobimane and monochlorobimane, the cellular BSH was converted to the fluorescent -conjugate BS-bimane. A bacillithiol conjugate amidase activity acted upon the BS-bimane to produce Cys-bimane, which was then acetylated by an acetyltransferase to generate -acetyl-Cys-bimane, a mercapturic acid. An mutant lacking BSH did not produce mercapturic acid when treated with monobromobimane and monochlorobimane, confirming the involvement of bacillithiol. Furthermore, treatment of Newman with rifamycin, the parent compound of the first-line anti-tuberculosis drug, rifampicin, indicated that this thiol-reactive antibiotic is also detoxified in a BSH-dependent manner, since mercapturic acids of rifamycin were observed in the culture medium. These data indicate that toxins and thiol-reactive antibiotics are detoxified to less potent mercapturic acids in a BSH-dependent manner and then exported out of the cell in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.055715-0
2012-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/4/1117.html?itemId=/content/journal/micro/10.1099/mic.0.055715-0&mimeType=html&fmt=ahah

References

  1. Allocati N., Federici L., Masulli M., Di Ilio C. ( 2009). Glutathione transferases in bacteria. FEBS J 276:58–75 [View Article][PubMed]
    [Google Scholar]
  2. Anderberg S. J., Newton G. L., Fahey R. C. ( 1998). Mycothiol biosynthesis and metabolism. Cellular levels of potential intermediates in the biosynthesis and degradation of mycothiol in Mycobacterium smegmatis . J Biol Chem 273:30391–30397 [View Article][PubMed]
    [Google Scholar]
  3. Cook J. A., Pass H. I., Russo A., Iype S., Mitchell J. B. ( 1989). Use of monochlorobimane for glutathione measurements in hamster and human tumor cell lines. Int J Radiat Oncol Biol Phys 16:1321–1324 [View Article][PubMed]
    [Google Scholar]
  4. Cort J. R., Ramelot T. A., Murray D., Acton T. B., Ma L. C., Xiao R., Montelione G. T., Kennedy M. A. ( 2008). Structure of an acetyl-CoA binding protein from Staphylococcus aureus representing a novel subfamily of GCN5-related N-acetyltransferase-like proteins. J Struct Funct Genomics 9:7–20 [View Article][PubMed]
    [Google Scholar]
  5. delCardayre S. B., Davies J. E. ( 1998). Staphylococcus aureus coenzyme A disulfide reductase, a new subfamily of pyridine nucleotide-disulfide oxidoreductase. Sequence, expression, and analysis of cdr . J Biol Chem 273:5752–5757 [View Article][PubMed]
    [Google Scholar]
  6. Fahey R. C., Brown W. C., Adams W. B., Worsham M. B. ( 1978). Occurrence of glutathione in bacteria. J Bacteriol 133:1126–1129[PubMed]
    [Google Scholar]
  7. Gaballa A., Newton G. L., Antelmann H., Parsonage D., Upton H., Rawat M., Claiborne A., Fahey R. C., Helmann J. D. ( 2010). Biosynthesis and functions of bacillithiol, a major low-molecular-weight thiol in Bacilli. Proc Natl Acad Sci U S A 107:6482–6486 [View Article][PubMed]
    [Google Scholar]
  8. Hinchman C. A., Ballatori N. ( 1994). Glutathione conjugation and conversion to mercapturic acids can occur as an intrahepatic process. J Toxicol Environ Health 41:387–409 [View Article][PubMed]
    [Google Scholar]
  9. Horsburgh M. J., Aish J. L., White I. J., Shaw L., Lithgow J. K., Foster S. J. ( 2002). σB modulates virulence determinant expression and stress resistance: characterization of a functional rsbU strain derived from Staphylococcus aureus 8325-4. J Bacteriol 184:5457–5467 [View Article][PubMed]
    [Google Scholar]
  10. Kullik I., Giachino P., Fuchs T. ( 1998). Deletion of the alternative sigma factor σB in Staphylococcus aureus reveals its function as a global regulator of virulence genes. J Bacteriol 180:4814–4820[PubMed]
    [Google Scholar]
  11. Newton G. L., Fahey R. C. ( 2002). Mycothiol biochemistry. Arch Microbiol 178:388–394 [View Article][PubMed]
    [Google Scholar]
  12. Newton G. L., Arnold K., Price M. S., Sherrill C., Delcardayre S. B., Aharonowitz Y., Cohen G., Davies J., Fahey R. C., Davis C. ( 1996). Distribution of thiols in microorganisms: mycothiol is a major thiol in most actinomycetes. J Bacteriol 178:1990–1995[PubMed]
    [Google Scholar]
  13. Newton G. L., Av-Gay Y., Fahey R. C. ( 2000). A novel mycothiol-dependent detoxification pathway in mycobacteria involving mycothiol S-conjugate amidase. Biochemistry 39:10739–10746 [View Article][PubMed]
    [Google Scholar]
  14. Newton G. L., Buchmeier N., Fahey R. C. ( 2008). Biosynthesis and functions of mycothiol, the unique protective thiol of Actinobacteria . Microbiol Mol Biol Rev 72:471–494 [View Article][PubMed]
    [Google Scholar]
  15. Newton G. L., Rawat M., La Clair J. J., Jothivasan V. K., Budiarto T., Hamilton C. J., Claiborne A., Helmann J. D., Fahey R. C. ( 2009). Bacillithiol is an antioxidant thiol produced in Bacilli. Nat Chem Biol 5:625–627 [View Article][PubMed]
    [Google Scholar]
  16. Newton G. L., Leung S. S., Wakabayashi J. I., Rawat M., Fahey R. C. ( 2011). The DinB superfamily includes novel mycothiol, bacillithiol, and glutathione S-transferases. Biochemistry 50:10751–10760 [View Article][PubMed]
    [Google Scholar]
  17. Novick R. P. ( 1990). The staphylococcus as a molecular genetic system. Molecular Biology of the Staphylococci1–37 Novick R. P. New York: VCH Publishers, Inc;
    [Google Scholar]
  18. Parsonage D., Newton G. L., Holder R. C., Wallace B. D., Paige C., Hamilton C. J., Dos Santos P. C., Redinbo M. R., Reid S. D., Claiborne A. ( 2010). Characterization of the N-acetyl-α-d-glucosaminyl 1-malate synthase and deacetylase functions for bacillithiol biosynthesis in Bacillus anthracis . Biochemistry 49:8398–8414 [View Article][PubMed]
    [Google Scholar]
  19. Rawat M., Newton G. L., Ko M., Martinez G. J., Fahey R. C., Av-Gay Y. ( 2002). Mycothiol-deficient Mycobacterium smegmatis mutants are hypersensitive to alkylating agents, free radicals, and antibiotics. Antimicrob Agents Chemother 46:3348–3355 [View Article][PubMed]
    [Google Scholar]
  20. Rawat M., Uppal M., Newton G., Steffek M., Fahey R. C., Av-Gay Y. ( 2004). Targeted mutagenesis of the Mycobacterium smegmatis mca gene, encoding a mycothiol-dependent detoxification protein. J Bacteriol 186:6050–6058 [View Article][PubMed]
    [Google Scholar]
  21. Sharma S. V., Jothivasan V. K., Newton G. L., Upton H., Wakabayashi J. I., Kane M. G., Roberts A. A., Rawat M., La Clair J. J., Hamilton C. J. ( 2011). Chemical and chemoenzymatic syntheses of bacillithiol: a unique low-molecular-weight thiol amongst low G+C Gram-positive bacteria. Angew Chem Int Ed Engl 50:7101–7104 [View Article][PubMed]
    [Google Scholar]
  22. Steffek M., Newton G. L., Av-Gay Y., Fahey R. C. ( 2003). Characterization of Mycobacterium tuberculosis mycothiol S-conjugate amidase. Biochemistry 42:12067–12076 [View Article][PubMed]
    [Google Scholar]
  23. Townsend D. M., Tew K. D. ( 2003). The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene 22:7369–7375 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.055715-0
Loading
/content/journal/micro/10.1099/mic.0.055715-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error