1887

Abstract

Two of the three [NiFe]-hydrogenases (Hyd) of have a hydrogen-uptake function in anaerobic metabolism. While Hyd-2 is maximally synthesized when the bacterium grows by fumarate respiration, Hyd-1 synthesis shows a correlation with fermentation of sugar substrates. In an attempt to advance our knowledge on the physiological function of Hyd-1 during fermentative growth, we examined Hyd-1 activity and levels in various derivatives of K-12 MC4100 with specific defects in sugar utilization. MC4100 lacks a functional fructose phosphotransferase system (PTS) and therefore grows more slowly under anaerobic conditions in rich medium in the presence of -fructose compared with -glucose. Growth in the presence of fructose resulted in an approximately 10-fold increase in Hyd-1 levels in comparison with growth under the same conditions with glucose. This increase in the amount of Hyd-1 was not due to regulation at the transcriptional level. Reintroduction of a functional -encoded fructose PTS into MC4100 restored growth on -fructose and reduced Hyd-1 levels to those observed after growth on -glucose. Reducing the rate of glucose uptake by introducing a mutation in the gene encoding the cAMP receptor protein, or consumption through glycolysis, by introducing a mutation in phosphoglucose isomerase, increased Hyd-1 levels during growth on glucose. These results suggest that the ability to oxidize hydrogen by Hyd-1 shows a strong correlation with the rate of carbon flow through glycolysis and provides a direct link between hydrogen, carbon and energy metabolism.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.056622-0
2012-03-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/3/856.html?itemId=/content/journal/micro/10.1099/mic.0.056622-0&mimeType=html&fmt=ahah

References

  1. Abràmoff M., Magalhaes P., Ram S. ( 2004). Image processing with ImageJ. Biophotonics International 11:36–42
    [Google Scholar]
  2. Aristidou A. A., San K. Y., Bennett G. N. ( 1999). Improvement of biomass yield and recombinant gene expression in Escherichia coli by using fructose as the primary carbon source. Biotechnol Prog 15:140–145 [View Article][PubMed]
    [Google Scholar]
  3. Atlung T., Knudsen K., Heerfordt L., Brøndsted L. ( 1997). Effects of sigmaS and the transcriptional activator AppY on induction of the Escherichia coli hya and cbdAB-appA operons in response to carbon and phosphate starvation. J Bacteriol 179:2141–2146[PubMed]
    [Google Scholar]
  4. Baba T., Ara T., Hasegawa M., Takai Y., Okumura Y., Baba M., Datsenko K. A., Tomita M., Wanner B. L., Mori H. ( 2006). Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:2006–, 0008 [View Article][PubMed]
    [Google Scholar]
  5. Ballantine S. P., Boxer D. H. ( 1985). Nickel-containing hydrogenase isoenzymes from anaerobically grown Escherichia coli K-12. J Bacteriol 163:454–459[PubMed]
    [Google Scholar]
  6. Ballantine S. P., Boxer D. H. ( 1986). Isolation and characterisation of a soluble active fragment of hydrogenase isoenzyme 2 from the membranes of anaerobically grown Escherichia coli . Eur J Biochem 156:277–284 [View Article][PubMed]
    [Google Scholar]
  7. Begg Y., Whyte J., Haddock B. ( 1977). The identification of mutants of Escherichia coli deficient in formate dehydrogenase and nitrate reductase activities using dye indicator plates. FEMS Microbiol Lett 2:47–50 [View Article]
    [Google Scholar]
  8. Böck A., King P. W., Blokesch M., Posewitz M. C. ( 2006). Maturation of hydrogenases. Adv Microb Physiol 51:1–71 [View Article][PubMed]
    [Google Scholar]
  9. Brøndsted L., Atlung T. ( 1994). Anaerobic regulation of the hydrogenase 1 (hya) operon of Escherichia coli . J Bacteriol 176:5423–5428[PubMed]
    [Google Scholar]
  10. Casadaban M. J. ( 1976). Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu. J Mol Biol 104:541–555 [View Article][PubMed]
    [Google Scholar]
  11. Datsenko K. A., Wanner B. L. ( 2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645 [View Article][PubMed]
    [Google Scholar]
  12. Deutscher J., Francke C., Postma P. W. ( 2006). How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 70:939–1031 [View Article][PubMed]
    [Google Scholar]
  13. Dubini A., Pye R., Jack R., Palmer T., Sargent F. ( 2002). How bacteria get energy from hydrogen: a genetic analysis of periplasmic hydrogen oxidation in Escherichia coli . Int J Hydrogen Energy 27:1413–1420 [View Article]
    [Google Scholar]
  14. Ferenci T., Kornberg H. L. ( 1973). The utilization of fructose by Escherichia coli. Properties of a mutant defective in fructose 1-phosphate kinase activity. Biochem J 132:341–347[PubMed]
    [Google Scholar]
  15. Forzi L., Sawers R. G. ( 2007). Maturation of [NiFe]-hydrogenases in Escherichia coli . Biometals 20:565–578 [View Article][PubMed]
    [Google Scholar]
  16. Fraenkel D. G. ( 1996). Glycolysis. EcoSal – Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd edn. Neidhardt F. C. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  17. Fritsch J., Scheerer P., Frielingsdorf S., Kroschinsky S., Friedrich B., Lenz O., Spahn C. M. T. ( 2011). The crystal structure of an oxygen-tolerant hydrogenase uncovers a novel iron–sulphur centre. Nature 479:249–252 [View Article][PubMed]
    [Google Scholar]
  18. Giel J. L., Rodionov D., Liu M., Blattner F. R., Kiley P. J. ( 2006). IscR-dependent gene expression links iron–sulphur cluster assembly to the control of O2-regulated genes in Escherichia coli . Mol Microbiol 60:1058–1075 [View Article][PubMed]
    [Google Scholar]
  19. Griffith K. L., Wolf R. E. Jr ( 2002). Measuring β-galactosidase activity in bacteria: cell growth, permeabilization, and enzyme assays in 96-well arrays. Biochem Biophys Res Commun 290:397–402 [View Article][PubMed]
    [Google Scholar]
  20. Gutierrez-Ríos R. M., Freyre-Gonzalez J. A., Resendis O., Collado-Vides J., Saier M., Gosset G. ( 2007). Identification of regulatory network topological units coordinating the genome-wide transcriptional response to glucose in Escherichia coli . BMC Microbiol 7:53 [View Article][PubMed]
    [Google Scholar]
  21. Jamieson D. J., Higgins C. F. ( 1986). Two genetically distinct pathways for transcriptional regulation of anaerobic gene expression in Salmonella typhimurium . J Bacteriol 168:389–397[PubMed]
    [Google Scholar]
  22. Knappe J., Sawers G. ( 1990). A radical-chemical route to acetyl-CoA: the anaerobically induced pyruvate formate-lyase system of Escherichia coli . FEMS Microbiol Rev 6:383–398 [View Article][PubMed]
    [Google Scholar]
  23. Kornberg H. L. ( 2001). Routes for fructose utilization by Escherichia coli . J Mol Microbiol Biotechnol 3:355–359[PubMed]
    [Google Scholar]
  24. Kornberg H. L., Lambourne L. T., Sproul A. A. ( 2000). Facilitated diffusion of fructose via the phosphoenolpyruvate/glucose phosphotransferase system of Escherichia coli . Proc Natl Acad Sci U S A 97:1808–1812 [View Article][PubMed]
    [Google Scholar]
  25. Laemmli U. K. ( 1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [View Article][PubMed]
    [Google Scholar]
  26. Laurinavichene T. V., Zorin N. A., Tsygankov A. A. ( 2002). Effect of redox potential on activity of hydrogenase 1 and hydrogenase 2 in Escherichia coli . Arch Microbiol 178:437–442 [View Article][PubMed]
    [Google Scholar]
  27. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. ( 1951). Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275[PubMed]
    [Google Scholar]
  28. Lukey M. J., Parkin A., Roessler M. M., Murphy B. J., Harmer J., Palmer T., Sargent F., Armstrong F. A. ( 2010). How Escherichia coli is equipped to oxidize hydrogen under different redox conditions. J Biol Chem 285:3928–3938 [View Article][PubMed]
    [Google Scholar]
  29. Miller J. ( 1972). Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  30. Noguchi K., Riggins D. P., Eldahan K. C., Kitko R. D., Slonczewski J. L. ( 2010). Hydrogenase-3 contributes to anaerobic acid resistance of Escherichia coli . PLoS ONE 5:e10132 [View Article][PubMed]
    [Google Scholar]
  31. Ow D. S.-W., Lee R. M.-Y., Nissom P. M., Philp R., Oh S. K.-W., Yap M. G.-S. ( 2007). Inactivating FruR global regulator in plasmid-bearing Escherichia coli alters metabolic gene expression and improves growth rate. J Biotechnol 131:261–269 [View Article][PubMed]
    [Google Scholar]
  32. Paschos A., Bauer A., Zimmermann A., Zehelein E., Böck A. ( 2002). HypF, a carbamoyl phosphate-converting enzyme involved in [NiFe] hydrogenase maturation. J Biol Chem 277:49945–49951 [View Article][PubMed]
    [Google Scholar]
  33. Peters J. E., Thate T. E., Craig N. L. ( 2003). Definition of the Escherichia coli MC4100 genome by use of a DNA array. J Bacteriol 185:2017–2021 [View Article][PubMed]
    [Google Scholar]
  34. Pinske C., Sawers G. ( 2011). Iron restriction induces preferential down-regulation of H2-consuming over H2-evolving reactions during fermentative growth of Escherichia coli . BMC Microbiol 11:196 [View Article][PubMed]
    [Google Scholar]
  35. Pinske C., Krüger S., Soboh B., Ihling C., Kuhns M., Braussemann M., Jaroschinsky M., Sauer C., Sargent F. & other authors ( 2011). Efficient electron transfer from hydrogen to benzyl viologen by the [NiFe]-hydrogenases of Escherichia coli is dependent on the coexpression of the iron–sulfur cluster-containing small subunit. Arch Microbiol 193:893–903 [View Article][PubMed]
    [Google Scholar]
  36. Plumbridge J., Kolb A. ( 1991). CAP and Nag repressor binding to the regulatory regions of the nagE-B and manX genes of Escherichia coli . J Mol Biol 217:661–679 [View Article][PubMed]
    [Google Scholar]
  37. Postma P. W., Lengeler J. W., Jacobson G. R. ( 1993). Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57:543–594[PubMed]
    [Google Scholar]
  38. Ramseier T. M., Bledig S., Michotey V., Feghali R., Saier M. H. Jr ( 1995). The global regulatory protein FruR modulates the direction of carbon flow in Escherichia coli . Mol Microbiol 16:1157–1169 [View Article][PubMed]
    [Google Scholar]
  39. Reiner A. M. ( 1977). Xylitol and d-arabitol toxicities due to derepressed fructose, galactitol, and sorbitol phosphotransferases of Escherichia coli . J Bacteriol 132:166–173[PubMed]
    [Google Scholar]
  40. Reizer J., Reizer A., Kornberg H. L., Saier M. H. Jr ( 1994). Sequence of the fruB gene of Escherichia coli encoding the diphosphoryl transfer protein (DTP) of the phosphoenolpyruvate: sugar phosphotransferase system. FEMS Microbiol Lett 118:159–162 [View Article][PubMed]
    [Google Scholar]
  41. Richard D. J., Sawers G., Sargent F., McWalter L., Boxer D. H. ( 1999). Transcriptional regulation in response to oxygen and nitrate of the operons encoding the [NiFe] hydrogenases 1 and 2 of Escherichia coli . Microbiology 145:2903–2912[PubMed]
    [Google Scholar]
  42. Rossmann R., Sawers G., Böck A. ( 1991). Mechanism of regulation of the formate-hydrogenlyase pathway by oxygen, nitrate, and pH: definition of the formate regulon. Mol Microbiol 5:2807–2814 [View Article][PubMed]
    [Google Scholar]
  43. Saier M. H. Jr, Ramseier T. M. ( 1996). The catabolite repressor/activator (Cra) protein of enteric bacteria. J Bacteriol 178:3411–3417[PubMed]
    [Google Scholar]
  44. Sambrook J., Russell D. ( 2001). Molecular Cloning: A Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  45. Sauter M., Böhm R., Böck A. ( 1992). Mutational analysis of the operon (hyc) determining hydrogenase 3 formation in Escherichia coli . Mol Microbiol 6:1523–1532 [View Article][PubMed]
    [Google Scholar]
  46. Sawers R. G., Boxer D. H. ( 1986). Purification and properties of membrane-bound hydrogenase isoenzyme 1 from anaerobically grown Escherichia coli K12. Eur J Biochem 156:265–275 [View Article][PubMed]
    [Google Scholar]
  47. Sawers R. G., Clark D. ( 2004). Fermentative pyruvate and acetyl-coenzyme A metabolism. EcoSal – Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd edn. Neidhardt F. C. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  48. Sawers R. G., Ballantine S. P., Boxer D. H. ( 1985). Differential expression of hydrogenase isoenzymes in Escherichia coli K-12: evidence for a third isoenzyme. J Bacteriol 164:1324–1331[PubMed]
    [Google Scholar]
  49. Sawers G., Hesslinger C., Muller N., Kaiser M. ( 1998). The glycyl radical enzyme TdcE can replace pyruvate formate-lyase in glucose fermentation. J Bacteriol 180:3509–3516[PubMed]
    [Google Scholar]
  50. Schlensog V., Lutz S., Böck A. ( 1994). Purification and DNA-binding properties of FHLA, the transcriptional activator of the formate hydrogenlyase system from Escherichia coli . J Biol Chem 269:19590–19596[PubMed]
    [Google Scholar]
  51. Simons R. W., Houman F., Kleckner N. ( 1987). Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene 53:85–96 [View Article][PubMed]
    [Google Scholar]
  52. Towbin H., Staehelin T., Gordon J. ( 1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76:4350–4354 [View Article][PubMed]
    [Google Scholar]
  53. Varenne S., Casse F., Chippaux M., Pascal M. C. ( 1975). A mutant of Escherichia coli deficient in pyruvate formate lyase. Mol Gen Genet 141:181–184 [View Article][PubMed]
    [Google Scholar]
  54. Zbell A. L., Maier R. J. ( 2009). Role of the Hya hydrogenase in recycling of anaerobically produced H2 in Salmonella enterica serovar Typhimurium. Appl Environ Microbiol 75:1456–1459 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.056622-0
Loading
/content/journal/micro/10.1099/mic.0.056622-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error