1887

Abstract

Iron is a nutrient of critical importance for the strict anaerobe , as it is involved in numerous basic cellular functions and metabolic pathways. A gene encoding a putative ferric uptake regulator (Fur) has been identified in the genome of . In this work, we inactivated the gene by using insertional mutagenesis. The resultant mutant showed a slow-growing phenotype and enhanced sensitivity to oxidative stress, but essentially no dramatic change in its fermentation pattern. A unique feature of its physiology was the overflowing production of riboflavin. To gain further insights into the role of the Fur protein and the mechanisms for establishment of iron balance in , we characterized and compared the gene-expression profile of the mutant and the iron-limitation stimulon of the parental strain. Not surprisingly, a repertoire of iron-transport systems was upregulated in both microarray datasets, suggesting that they are regulated by Fur according to the availability of iron. In addition, iron limitation and inactivation of affected the expression of several genes involved in energy metabolism. Among them, two genes, encoding a lactate dehydrogenase and a flavodoxin, were highly induced. In order to support the function of the latter, the operon responsible for riboflavin biosynthesis was also upregulated significantly. Furthermore, the iron-starvation response of involved transcriptional modifications that were not detected in the mutant, suggesting that there exist additional mechanisms for adaptation to low-iron environments. Collectively, these results demonstrate that the strict anaerobe senses and responds to availability of iron on multiple levels using a sophisticated system, and that Fur plays an important role in this process.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.056978-0
2012-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/7/1918.html?itemId=/content/journal/micro/10.1099/mic.0.056978-0&mimeType=html&fmt=ahah

References

  1. Andrews S. C., Robinson A. K., Rodríguez-Quiñones F. ( 2003). Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–237 [View Article][PubMed]
    [Google Scholar]
  2. Bahl H., Gottwald M., Kuhn A., Rale V., Andersch W., Gottschalk G. ( 1986). Nutritional factors affecting the ratio of solvents produced by Clostridium acetobutylicum. . Appl Environ Microbiol 52:169–172[PubMed]
    [Google Scholar]
  3. Baichoo N., Wang T., Ye R., Helmann J. D. ( 2002). Global analysis of the Bacillus subtilis Fur regulon and the iron starvation stimulon. Mol Microbiol 45:1613–1629 [View Article][PubMed]
    [Google Scholar]
  4. Bender K. S., Yen H. C., Hemme C. L., Yang Z., He Z., He Q., Zhou J., Huang K. H., Alm E. J. & other authors ( 2007). Analysis of a ferric uptake regulator (Fur) mutant of Desulfovibrio vulgaris Hildenborough. Appl Environ Microbiol 73:5389–5400 [View Article][PubMed]
    [Google Scholar]
  5. Boyd J., Oza M. N., Murphy J. R. ( 1990). Molecular cloning and DNA sequence analysis of a diphtheria tox iron-dependent regulatory element (dtxR) from Corynebacterium diphtheriae . Proc Natl Acad Sci U S A 87:5968–5972 [View Article][PubMed]
    [Google Scholar]
  6. Braun V., Killmann H. ( 1999). Bacterial solutions to the iron-supply problem. Trends Biochem Sci 24:104–109 [View Article][PubMed]
    [Google Scholar]
  7. Cai X., Bennett G. N. ( 2011). Improving the Clostridium acetobutylicum butanol fermentation by engineering the strain for co-production of riboflavin. J Ind Microbiol Biotechnol 38:1013–1025 [View Article][PubMed]
    [Google Scholar]
  8. Cartron M. L., Maddocks S., Gillingham P., Craven C. J., Andrews S. C. ( 2006). Feo – transport of ferrous iron into bacteria. Biometals 19:143–157 [View Article][PubMed]
    [Google Scholar]
  9. Crooks G. E., Hon G., Chandonia J. M., Brenner S. E. ( 2004). WebLogo: a sequence logo generator. Genome Res 14:1188–1190 [View Article][PubMed]
    [Google Scholar]
  10. Crossley R. A., Gaskin D. J., Holmes K., Mulholland F., Wells J. M., Kelly D. J., van Vliet A. H., Walton N. J. ( 2007). Riboflavin biosynthesis is associated with assimilatory ferric reduction and iron acquisition by Campylobacter jejuni . Appl Environ Microbiol 73:7819–7825 [View Article][PubMed]
    [Google Scholar]
  11. Czaplewski L. G., North A. K., Smith M. C., Baumberg S., Stockley P. G. ( 1992). Purification and initial characterization of AhrC: the regulator of arginine metabolism genes in Bacillus subtilis . Mol Microbiol 6:267–275 [View Article][PubMed]
    [Google Scholar]
  12. Dabrock B., Bahl H., Gottschalk G. ( 1992). Parameters affecting solvent production by Clostridium pasteurianum . Appl Environ Microbiol 58:1233–1239[PubMed]
    [Google Scholar]
  13. Dashper S. G., Butler C. A., Lissel J. P., Paolini R. A., Hoffmann B., Veith P. D., O’Brien-Simpson N. M., Snelgrove S. L., Tsiros J. T., Reynolds E. C. ( 2005). A novel Porphyromonas gingivalis FeoB plays a role in manganese accumulation. J Biol Chem 280:28095–28102 [View Article][PubMed]
    [Google Scholar]
  14. Delany I., Spohn G., Rappuoli R., Scarlato V. ( 2001). The Fur repressor controls transcription of iron-activated and -repressed genes in Helicobacter pylori . Mol Microbiol 42:1297–1309 [View Article][PubMed]
    [Google Scholar]
  15. Delany I., Rappuoli R., Scarlato V. ( 2004). Fur functions as an activator and as a repressor of putative virulence genes in Neisseria meningitidis . Mol Microbiol 52:1081–1090 [View Article][PubMed]
    [Google Scholar]
  16. Delany I., Grifantini R., Bartolini E., Rappuoli R., Scarlato V. ( 2006). Effect of Neisseria meningitidis fur mutations on global control of gene transcription. J Bacteriol 188:2483–2492 [View Article][PubMed]
    [Google Scholar]
  17. Demain A. L. ( 1972). Riboflavin oversynthesis. Annu Rev Microbiol 26:369–388 [View Article][PubMed]
    [Google Scholar]
  18. Demuez M., Cournac L., Guerrini O., Soucaille P., Girbal L. ( 2007). Complete activity profile of Clostridium acetobutylicum [FeFe]-hydrogenase and kinetic parameters for endogenous redox partners. FEMS Microbiol Lett 275:113–121 [View Article][PubMed]
    [Google Scholar]
  19. Dussurget O., Rodriguez M., Smith I. ( 1996). An ideR mutant of Mycobacterium smegmatis has derepressed siderophore production and an altered oxidative-stress response. Mol Microbiol 22:535–544 [View Article][PubMed]
    [Google Scholar]
  20. Ernst F. D., Bereswill S., Waidner B., Stoof J., Mäder U., Kusters J. G., Kuipers E. J., Kist M., van Vliet A. H., Homuth G. ( 2005). Transcriptional profiling of Helicobacter pylori Fur- and iron-regulated gene expression. Microbiology 151:533–546 [View Article][PubMed]
    [Google Scholar]
  21. Escolar L., Pérez-Martín J., de Lorenzo V. ( 1999). Opening the iron box: transcriptional metalloregulation by the Fur protein. J Bacteriol 181:6223–6229[PubMed]
    [Google Scholar]
  22. Fedorovich D., Protchenko O., Lesuisse E. ( 1999). Iron uptake by the yeast Pichia guilliermondii. Flavinogenesis and reductive iron assimilation are co-regulated processes. Biometals 12:295–300 [View Article][PubMed]
    [Google Scholar]
  23. Fischer R. J., Oehmcke S., Meyer U., Mix M., Schwarz K., Fiedler T., Bahl H. ( 2006). Transcription of the pst operon of Clostridium acetobutylicum is dependent on phosphate concentration and pH. J Bacteriol 188:5469–5478 [View Article][PubMed]
    [Google Scholar]
  24. Gaballa A., Antelmann H., Aguilar C., Khakh S. K., Song K. B., Smaldone G. T., Helmann J. D. ( 2008). The Bacillus subtilis iron-sparing response is mediated by a Fur-regulated small RNA and three small, basic proteins. Proc Natl Acad Sci U S A 105:11927–11932 [View Article][PubMed]
    [Google Scholar]
  25. Gorwa M. F., Croux C., Soucaille P. ( 1996). Molecular characterization and transcriptional analysis of the putative hydrogenase gene of Clostridium acetobutylicum ATCC 824. J Bacteriol 178:2668–2675[PubMed]
    [Google Scholar]
  26. Grimmler C., Janssen H., Krauβe D., Fischer R.-J., Bahl H., Dürre P., Liebl W., Ehrenreich A. ( 2011). Genome-wide gene expression analysis of the switch between acidogenesis and solventogenesis in continuous cultures of Clostridium acetobutylicum . J Mol Microbiol Biotechnol 20:1–15 [View Article][PubMed]
    [Google Scholar]
  27. Hanahan D. ( 1983). Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580 [View Article][PubMed]
    [Google Scholar]
  28. Heap J. T., Pennington O. J., Cartman S. T., Carter G. P., Minton N. P. ( 2007). The ClosTron: a universal gene knock-out system for the genus Clostridium . J Microbiol Methods 70:452–464 [View Article][PubMed]
    [Google Scholar]
  29. Heap J. T., Pennington O. J., Cartman S. T., Minton N. P. ( 2009). A modular system for Clostridium shuttle plasmids. J Microbiol Methods 78:79–85 [View Article][PubMed]
    [Google Scholar]
  30. Heap J. T., Kuehne S. A., Ehsaan M., Cartman S. T., Cooksley C. M., Scott J. C., Minton N. P. ( 2010). The ClosTron: mutagenesis in Clostridium refined and streamlined. J Microbiol Methods 80:49–55 [View Article][PubMed]
    [Google Scholar]
  31. Hill P. J., Cockayne A., Landers P., Morrissey J. A., Sims C. M., Williams P. ( 1998). SirR, a novel iron-dependent repressor in Staphylococcus epidermidis . Infect Immun 66:4123–4129[PubMed]
    [Google Scholar]
  32. Hillmann F., Fischer R. J., Saint-Prix F., Girbal L., Bahl H. ( 2008). PerR acts as a switch for oxygen tolerance in the strict anaerobe Clostridium acetobutylicum . Mol Microbiol 68:848–860 [View Article][PubMed]
    [Google Scholar]
  33. Hillmann F., Döring C., Riebe O., Ehrenreich A., Fischer R. J., Bahl H. ( 2009). The role of PerR in O2-affected gene expression of Clostridium acetobutylicum . J Bacteriol 191:6082–6093 [View Article][PubMed]
    [Google Scholar]
  34. Imlay J. A. ( 2008). How obligatory is anaerobiosis?. Mol Microbiol 68:801–804 [View Article][PubMed]
    [Google Scholar]
  35. Janssen H., Döring C., Ehrenreich A., Voigt B., Hecker M., Bahl H., Fischer R. J. ( 2010). A proteomic and transcriptional view of acidogenic and solventogenic steady-state cells of Clostridium acetobutylicum in a chemostat culture. Appl Microbiol Biotechnol 87:2209–2226 [View Article][PubMed]
    [Google Scholar]
  36. Jones D. T., Woods D. R. ( 1986). Acetone–butanol fermentation revisited. Microbiol Rev 50:484–524[PubMed]
    [Google Scholar]
  37. Junelles A. M., Janati-Idrissi R., Petitdemange H., Gay R. ( 1988). Iron effect on acetone–butanol fermentation. Curr Microbiol 17:299–303 [View Article]
    [Google Scholar]
  38. Kawasaki S., Ishikura J., Watamura Y., Niimura Y. ( 2004). Identification of O2-induced peptides in an obligatory anaerobe, Clostridium acetobutylicum . FEBS Lett 571:21–25 [View Article][PubMed]
    [Google Scholar]
  39. Knight E. Jr, Hardy R. W. ( 1966). Isolation and characteristics of flavodoxin from nitrogen-fixing Clostridium pasteurianum . J Biol Chem 241:2752–2756[PubMed]
    [Google Scholar]
  40. Knight E. Jr, D’Eustachio A. J., Hardy R. W. ( 1966). Flavodoxin: a flavoprotein with ferredoxin activity from Clostrium pasteurianum . Biochim Biophys Acta 113:626–628[PubMed] [CrossRef]
    [Google Scholar]
  41. Louvel H., Kanai T., Atomi H., Reeve J. N. ( 2009). The Fur iron regulator-like protein is cryptic in the hyperthermophilic archaeon Thermococcus kodakaraensis . FEMS Microbiol Lett 295:117–128 [View Article][PubMed]
    [Google Scholar]
  42. Martin J. E., Imlay J. A. ( 2011). The alternative aerobic ribonucleotide reductase of Escherichia coli, NrdEF, is a manganese-dependent enzyme that enables cell replication during periods of iron starvation. Mol Microbiol 80:319–334 [View Article][PubMed]
    [Google Scholar]
  43. Massé E., Arguin M. ( 2005). Ironing out the problem: new mechanisms of iron homeostasis. Trends Biochem Sci 30:462–468 [View Article][PubMed]
    [Google Scholar]
  44. Mayhew S. G., Massey V. ( 1969). Purification and characterization of flavodoxin from Peptostreptococcus elsdenii . J Biol Chem 244:794–802[PubMed]
    [Google Scholar]
  45. McHugh J. P., Rodríguez-Quinoñes F., Abdul-Tehrani H., Svistunenko D. A., Poole R. K., Cooper C. E., Andrews S. C. ( 2003). Global iron-dependent gene regulation in Escherichia coli. A new mechanism for iron homeostasis. J Biol Chem 278:29478–29486 [View Article][PubMed]
    [Google Scholar]
  46. Mellin J. R., Goswami S., Grogan S., Tjaden B., Genco C. A. ( 2007). A novel fur- and iron-regulated small RNA, NrrF, is required for indirect fur-mediated regulation of the sdhA and sdhC genes in Neisseria meningitidis . J Bacteriol 189:3686–3694 [View Article][PubMed]
    [Google Scholar]
  47. Mironov A. S., Gusarov I., Rafikov R., Lopez L. E., Shatalin K., Kreneva R. A., Perumov D. A., Nudler E. ( 2002). Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria. Cell 111:747–756 [View Article][PubMed]
    [Google Scholar]
  48. Münch R., Hiller K., Barg H., Heldt D., Linz S., Wingender E., Jahn D. ( 2003). prodoric: prokaryotic database of gene regulation. Nucleic Acids Res 31:266–269 [View Article][PubMed]
    [Google Scholar]
  49. Nölling J., Breton G., Omelchenko M. V., Makarova K. S., Zeng Q., Gibson R., Lee H. M., Dubois J., Qiu D. & other authors ( 2001). Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum . J Bacteriol 183:4823–4838 [View Article][PubMed]
    [Google Scholar]
  50. O’Brien R. W., Morris J. G. ( 1971). Oxygen and the growth and metabolism of Clostridium acetobutylicum . J Gen Microbiol 68:307–318[PubMed] [CrossRef]
    [Google Scholar]
  51. Outten F. W., Djaman O., Storz G. ( 2004). A suf operon requirement for Fe–S cluster assembly during iron starvation in Escherichia coli . Mol Microbiol 52:861–872 [View Article][PubMed]
    [Google Scholar]
  52. Parker D., Kennan R. M., Myers G. S., Paulsen I. T., Rood J. I. ( 2005). Identification of a Dichelobacter nodosus ferric uptake regulator and determination of its regulatory targets. J Bacteriol 187:366–375 [View Article][PubMed]
    [Google Scholar]
  53. Peguin S., Soucaille P. ( 1995). Modulation of carbon and electron flow in Clostridium acetobutylicum by iron limitation and methyl viologen addition. Appl Environ Microbiol 61:403–405[PubMed]
    [Google Scholar]
  54. Que Q., Helmann J. D. ( 2000). Manganese homeostasis in Bacillus subtilis is regulated by MntR, a bifunctional regulator related to the diphtheria toxin repressor family of proteins. Mol Microbiol 35:1454–1468 [View Article][PubMed]
    [Google Scholar]
  55. Ratledge C., Dover L. G. ( 2000). Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 54:881–941 [View Article][PubMed]
    [Google Scholar]
  56. Ratnayake-Lecamwasam M., Serror P., Wong K. W., Sonenshein A. L. ( 2001). Bacillus subtilis CodY represses early-stationary-phase genes by sensing GTP levels. Genes Dev 15:1093–1103 [View Article][PubMed]
    [Google Scholar]
  57. Sandmann G., Malkin R. ( 1983). Iron-sulfur centers and activities of the photosynthetic electron transport chain in iron-deficient cultures of the blue-green alga Aphanocapsa . Plant Physiol 73:724–728 [View Article][PubMed]
    [Google Scholar]
  58. Schröder I., Johnson E., de Vries S. ( 2003). Microbial ferric iron reductases. FEMS Microbiol Rev 27:427–447 [View Article][PubMed]
    [Google Scholar]
  59. Susín S., Abián J., Sánchez-Baeza F., Peleato M. L., Abadía A., Gelpí E., Abadía J. ( 1993). Riboflavin 3′- and 5′-sulfate, two novel flavins accumulating in the roots of iron-deficient sugar beet (Beta vulgaris). J Biol Chem 268:20958–20965[PubMed]
    [Google Scholar]
  60. Tanner F. W. Jr, Vojnovich C., VAN Lanen J. M. ( 1945). Riboflavin production by Candida species. Science 101:180–181 [View Article][PubMed]
    [Google Scholar]
  61. Tatusov R. L., Fedorova N. D., Jackson J. D., Jacobs A. R., Kiryutin B., Koonin E. V., Krylov D. M., Mazumder R., Mekhedov S. L. & other authors ( 2003). The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4:41 [View Article][PubMed]
    [Google Scholar]
  62. Touati D. ( 2000). Iron and oxidative stress in bacteria. Arch Biochem Biophys 373:1–6 [View Article][PubMed]
    [Google Scholar]
  63. Vorwieger A., Gryczka C., Czihal A., Douchkov D., Tiedemann J., Mock H. P., Jakoby M., Weisshaar B., Saalbach I., Bäumlein H. ( 2007). Iron assimilation and transcription factor controlled synthesis of riboflavin in plants. Planta 226:147–158 [View Article][PubMed]
    [Google Scholar]
  64. Wandersman C., Delepelaire P. ( 2004). Bacterial iron sources: from siderophores to hemophores. Annu Rev Microbiol 58:611–647 [View Article][PubMed]
    [Google Scholar]
  65. Worst D. J., Gerrits M. M., Vandenbroucke-Grauls C. M., Kusters J. G. ( 1998). Helicobacter pylori ribBA-mediated riboflavin production is involved in iron acquisition. J Bacteriol 180:1473–1479[PubMed]
    [Google Scholar]
  66. Yang Y., Harris D. P., Luo F., Wu L., Parsons A. B., Palumbo A. V., Zhou J. ( 2008). Characterization of the Shewanella oneidensis Fur gene: roles in iron and acid tolerance response. BMC Genomics 9:Suppl. 1S11 [View Article][PubMed]
    [Google Scholar]
  67. Yu C., Genco C. A. ( 2012). Fur-mediated activation of gene transcription in the human pathogen Neisseria gonorrhoeae . J Bacteriol 194:1730–1742 [View Article][PubMed]
    [Google Scholar]
  68. Zheng M., Wang X., Templeton L. J., Smulski D. R., LaRossa R. A., Storz G. ( 2001). DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide. J Bacteriol 183:4562–4570 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.056978-0
Loading
/content/journal/micro/10.1099/mic.0.056978-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error