1887

Abstract

Mannose is an important constituent of the immunomodulatory glycoconjugates of the mycobacterial cell wall: lipoarabinomannan (LAM), lipomannan (LM) and the related phospho--inositol mannosides (PIMs). In and the related bacillus , mannose is either imported from the medium or derived from glycolysis, and is subsequently converted into the nucleotide-based sugar donor guanosine diphosphomannose (GDP-mannose). This can be utilized by the glycosyltranferases of the GT-A/B superfamily or converted to the lipid-based donor polyprenyl monophosphomannose, and used as a substrate by the transmembrane glycosyltransferases of the GT-C superfamily. To investigate GDP-mannose biosynthesis in detail, the gene encoding a putative ManC in was deleted. Deletion of resulted in a slow-growing mutant, with reduced but not totally abrogated guanosine diphosphomannose pyrophosphorylase activity. However, a comprehensive cell wall analysis revealed that Δ is deficient in PIMs and LM/LAM. Closer inspection suggests that promiscuous ManC activity is contributed by additional putative nucleotidyltransferases, PmmB, WbbL1, GalU and GlmU, and a hypothetical protein, NCgl0715. Furthermore, complementation analyses of Δ with Rv3264c suggested that it is a true homologue of ManC in , and the essentiality of PIMs in makes it an attractive drug target.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.057653-0
2012-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/7/1908.html?itemId=/content/journal/micro/10.1099/mic.0.057653-0&mimeType=html&fmt=ahah

References

  1. Alderwick L. J., Dover L. G., Seidel M., Gande R., Sahm H., Eggeling L., Besra G. S. ( 2006a). Arabinan-deficient mutants of Corynebacterium glutamicum and the consequent flux in decaprenylmonophosphoryl-d-arabinose metabolism. Glycobiology 16:1073–1081 [View Article][PubMed]
    [Google Scholar]
  2. Alderwick L. J., Seidel M., Sahm H., Besra G. S., Eggeling L. ( 2006b). Identification of a novel arabinofuranosyltransferase (AftA) involved in cell wall arabinan biosynthesis in Mycobacterium tuberculosis . J Biol Chem 281:15653–15661 [View Article][PubMed]
    [Google Scholar]
  3. Alderwick L. J., Birch H. L., Mishra A. K., Eggeling L., Besra G. S. ( 2007). Structure, function and biosynthesis of the Mycobacterium tuberculosis cell wall: arabinogalactan and lipoarabinomannan assembly with a view to discovering new drug targets. Biochem Soc Trans 35:1325–1328 [View Article][PubMed]
    [Google Scholar]
  4. Bateman A., Coin L., Durbin R., Finn R. D., Hollich V., Griffiths-Jones S., Khanna A., Marshall M., Moxon S. & other authors ( 2004). The Pfam protein families database. Nucleic Acids Res 32:Database issueD138–D141 [View Article][PubMed]
    [Google Scholar]
  5. Baykov A. A., Evtushenko O. A., Avaeva S. M. ( 1988). A malachite green procedure for orthophosphate determination and its use in alkaline phosphatase-based enzyme immunoassay. Anal Biochem 171:266–270 [View Article][PubMed]
    [Google Scholar]
  6. Birch H. L., Alderwick L. J., Bhatt A., Rittmann D., Krumbach K., Singh A., Bai Y., Lowary T. L., Eggeling L., Besra G. S. ( 2008). Biosynthesis of mycobacterial arabinogalactan: identification of a novel α(1→3) arabinofuranosyltransferase. Mol Microbiol 69:1191–1206[PubMed]
    [Google Scholar]
  7. Briken V., Porcelli S. A., Besra G. S., Kremer L. ( 2004). Mycobacterial lipoarabinomannan and related lipoglycans: from biogenesis to modulation of the immune response. Mol Microbiol 53:391–403 [View Article][PubMed]
    [Google Scholar]
  8. Dobson G., Minnikin D. E., Minnikin S. M., Parlett J. H., Goodfellow M., Ridell M., Magnusson M. ( 1985). Systematic analysis of complex mycobacterial lipids. Chemical Methods in Bacterial Systematics237–265 Goodfellow M., Minnikin D. E. London: Academic Press;
    [Google Scholar]
  9. Eggeling L., Bott M. (editors) ( 2005). Handbook of Corynebacterium glutamicum Boca Raton, FL: CRC Press, Taylor Francis Group; [View Article]
    [Google Scholar]
  10. Gande R., Gibson K. J., Brown A. K., Krumbach K., Dover L. G., Sahm H., Shioyama S., Oikawa T., Besra G. S., Eggeling L. ( 2004). Acyl-CoA carboxylases (accD2 and accD3), together with a unique polyketide synthase (Cg-pks), are key to mycolic acid biosynthesis in Corynebacterianeae such as Corynebacterium glutamicum and Mycobacterium tuberculosis . J Biol Chem 279:44847–44857 [View Article][PubMed]
    [Google Scholar]
  11. Gande R., Dover L. G., Krumbach K., Besra G. S., Sahm H., Oikawa T., Eggeling L. ( 2007). The two carboxylases of Corynebacterium glutamicum essential for fatty acid and mycolic acid synthesis. J Bacteriol 189:5257–5264 [View Article][PubMed]
    [Google Scholar]
  12. Gibson K. J., Eggeling L., Maughan W. N., Krumbach K., Gurcha S. S., Nigou J., Puzo G., Sahm H., Besra G. S. ( 2003). Disruption of Cg-Ppm1, a polyprenyl monophosphomannose synthase, and the generation of lipoglycan-less mutants in Corynebacterium glutamicum . J Biol Chem 278:40842–40850 [View Article][PubMed]
    [Google Scholar]
  13. González-Zamorano M., Mendoza-Hernández G., Xolalpa W., Parada C., Vallecillo A. J., Bigi F., Espitia C. ( 2009). Mycobacterium tuberculosis glycoproteomics based on ConA-lectin affinity capture of mannosylated proteins. J Proteome Res 8:721–733 [View Article][PubMed]
    [Google Scholar]
  14. Hartmann M., Barsch A., Niehaus K., Pühler A., Tauch A., Kalinowski J. ( 2004). The glycosylated cell surface protein Rpf2, containing a resuscitation-promoting factor motif, is involved in intercellular communication of Corynebacterium glutamicum . Arch Microbiol 182:299–312 [View Article][PubMed]
    [Google Scholar]
  15. He X. M., Liu H. W. ( 2002). Formation of unusual sugars: mechanistic studies and biosynthetic applications. Annu Rev Biochem 71:701–754 [View Article][PubMed]
    [Google Scholar]
  16. Jackson M., Brennan P. J. ( 2009). Polymethylated polysaccharides from Mycobacterium species revisited. J Biol Chem 284:1949–1953 [View Article][PubMed]
    [Google Scholar]
  17. Kowalska H., Pastuszak I., Szymona M. ( 1980). A mannoglucokinese of Mycobacterium tuberculosis H37Ra. Acta Microbiol Pol 29:249–257[PubMed]
    [Google Scholar]
  18. Lea-Smith D. J., Martin K. L., Pyke J. S., Tull D., McConville M. J., Coppel R. L., Crellin P. K. ( 2008). Analysis of a new mannosyltransferase required for the synthesis of phosphatidylinositol mannosides and lipoarbinomannan reveals two lipomannan pools in Corynebacterineae. J Biol Chem 283:6773–6782 [View Article][PubMed]
    [Google Scholar]
  19. Liu J., Mushegian A. ( 2003). Three monophyletic superfamilies account for the majority of the known glycosyltransferases. Protein Sci 12:1418–1431 [View Article][PubMed]
    [Google Scholar]
  20. Ludwiczak P., Brando T., Monsarrat B., Puzo G. ( 2001). Structural characterization of Mycobacterium tuberculosis lipoarabinomannans by the combination of capillary electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chem 73:2323–2330 [View Article][PubMed]
    [Google Scholar]
  21. Ma Y., Stern R. J., Scherman M. S., Vissa V. D., Yan W., Jones V. C., Zhang F., Franzblau S. G., Lewis W. H., McNeil M. R. ( 2001). Drug targeting Mycobacterium tuberculosis cell wall synthesis: genetics of dTDP-rhamnose synthetic enzymes and development of a microtiter plate-based screen for inhibitors of conversion of dTDP-glucose to dTDP-rhamnose. Antimicrob Agents Chemother 45:1407–1416 [View Article][PubMed]
    [Google Scholar]
  22. Ma Y., Pan F., McNeil M. ( 2002). Formation of dTDP-rhamnose is essential for growth of mycobacteria. J Bacteriol 184:3392–3395 [View Article][PubMed]
    [Google Scholar]
  23. Mahne M., Tauch A., Pühler A., Kalinowski J. ( 2006). The Corynebacterium glutamicum gene pmt encoding a glycosyltransferase related to eukaryotic protein-O-mannosyltransferases is essential for glycosylation of the resuscitation promoting factor (Rpf2) and other secreted proteins. FEMS Microbiol Lett 259:226–233 [View Article][PubMed]
    [Google Scholar]
  24. McCarthy T. R., Torrelles J. B., MacFarlane A. S., Katawczik M., Kutzbach B., Desjardin L. E., Clegg S., Goldberg J. B., Schlesinger L. S. ( 2005). Overexpression of Mycobacterium tuberculosis manB, a phosphomannomutase that increases phosphatidylinositol mannoside biosynthesis in Mycobacterium smegmatis and mycobacterial association with human macrophages. Mol Microbiol 58:774–790 [View Article][PubMed]
    [Google Scholar]
  25. Mills J. A., Motichka K., Jucker M., Wu H. P., Uhlik B. C., Stern R. J., Scherman M. S., Vissa V. D., Pan F. & other authors ( 2004). Inactivation of the mycobacterial rhamnosyltransferase, which is needed for the formation of the arabinogalactan-peptidoglycan linker, leads to irreversible loss of viability. J Biol Chem 279:43540–43546 [View Article][PubMed]
    [Google Scholar]
  26. Mishra A. K., Alderwick L. J., Rittmann D., Tatituri R. V., Nigou J., Gilleron M., Eggeling L., Besra G. S. ( 2007). Identification of an α(1→6) mannopyranosyltransferase (MptA), involved in Corynebacterium glutamicum lipomanann biosynthesis, and identification of its orthologue in Mycobacterium tuberculosis . Mol Microbiol 65:1503–1517 [View Article][PubMed]
    [Google Scholar]
  27. Mishra A. K., Alderwick L. J., Rittmann D., Wang C., Bhatt A., Jacobs W. R. Jr, Takayama K., Eggeling L., Besra G. S. ( 2008a). Identification of a novel α(1→6) mannopyranosyltransferase MptB from Corynebacterium glutamicum by deletion of a conserved gene, NCgl1505, affords a lipomannan- and lipoarabinomannan-deficient mutant. Mol Microbiol 68:1595–1613 [View Article][PubMed]
    [Google Scholar]
  28. Mishra A. K., Klein C., Gurcha S. S., Alderwick L. J., Babu P., Hitchen P. G., Morris H. R., Dell A., Besra G. S., Eggeling L. ( 2008b). Structural characterization and functional properties of a novel lipomannan variant isolated from a Corynebacterium glutamicum pimB′ mutant. Antonie van Leeuwenhoek 94:277–287 [View Article][PubMed]
    [Google Scholar]
  29. Mishra A. K., Batt S., Krumbach K., Eggeling L., Besra G. S. ( 2009). Characterization of the Corynebacterium glutamicum ΔpimB′ ΔmgtA double deletion mutant and the role of Mycobacterium tuberculosis orthologues Rv2188c and Rv0557 in glycolipid biosynthesis. J Bacteriol 191:4465–4472 [View Article][PubMed]
    [Google Scholar]
  30. Mishra A. K., Krumbach K., Rittmann D., Appelmelk B., Pathak V., Pathak A. K., Nigou J., Geurtsen J., Eggeling L., Besra G. S. ( 2011a). Lipoarabinomannan biosynthesis in Corynebacterineae: the interplay of two α(1→2)-mannopyranosyltransferases MptC and MptD in mannan branching. Mol Microbiol 80:1241–1259 [View Article][PubMed]
    [Google Scholar]
  31. Mishra A. K., Driessen N. N., Appelmelk B. J., Besra G. S. ( 2011b). Lipoarabinomannan and related glycoconjugates: structure, biogenesis and role in Mycobacterium tuberculosis physiology and host–pathogen interaction. FEMS Microbiol Rev 35:1126–1157 [View Article][PubMed]
    [Google Scholar]
  32. Nigou J., Gilleron M., Cahuzac B., Bounéry J. D., Herold M., Thurnher M., Puzo G. ( 1997). The phosphatidyl-myo-inositol anchor of the lipoarabinomannans from Mycobacterium bovis bacillus Calmette Guérin. Heterogeneity, structure, and role in the regulation of cytokine secretion. J Biol Chem 272:23094–23103 [View Article][PubMed]
    [Google Scholar]
  33. Ning B., Elbein A. D. ( 1999). Purification and properties of mycobacterial GDP-mannose pyrophosphorylase. Arch Biochem Biophys 362:339–345 [View Article][PubMed]
    [Google Scholar]
  34. Patterson J. H., Waller R. F., Jeevarajah D., Billman-Jacobe H., McConville M. J. ( 2003). Mannose metabolism is required for mycobacterial growth. Biochem J 372:77–86 [View Article][PubMed]
    [Google Scholar]
  35. Sassetti C. M., Boyd D. H., Rubin E. J. ( 2003). Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48:77–84 [View Article][PubMed]
    [Google Scholar]
  36. Schäfer A., Tauch A., Jäger W., Kalinowski J., Thierbach G., Pühler A. ( 1994). Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum . Gene 145:69–73 [View Article][PubMed]
    [Google Scholar]
  37. Seidel M., Alderwick L. J., Birch H. L., Sahm H., Eggeling L., Besra G. S. ( 2007). Identification of a novel arabinofuranosyltransferase AftB involved in a terminal step of cell wall arabinan biosynthesis in Corynebacterianeae, such as Corynebacterium glutamicum and Mycobacterium tuberculosis . J Biol Chem 282:14729–14740 [View Article][PubMed]
    [Google Scholar]
  38. Tatituri R. V., Illarionov P. A., Dover L. G., Nigou J., Gilleron M., Hitchen P., Krumbach K., Morris H. R., Spencer N. & other authors ( 2007a). Inactivation of Corynebacterium glutamicum NCgl0452 and the role of MgtA in the biosynthesis of a novel mannosylated glycolipid involved in lipomannan biosynthesis. J Biol Chem 282:4561–4572 [View Article][PubMed]
    [Google Scholar]
  39. Tatituri R. V., Alderwick L. J., Mishra A. K., Nigou J., Gilleron M., Krumbach K., Hitchen P., Giordano A., Morris H. R. & other authors ( 2007b). Structural characterization of a partially arabinosylated lipoarabinomannan variant isolated from a Corynebacterium glutamicum ubiA mutant. Microbiology 153:2621–2629 [View Article][PubMed]
    [Google Scholar]
  40. VanderVen B. C., Harder J. D., Crick D. C., Belisle J. T. ( 2005). Export-mediated assembly of mycobacterial glycoproteins parallels eukaryotic pathways. Science 309:941–943[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.057653-0
Loading
/content/journal/micro/10.1099/mic.0.057653-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error