1887

Abstract

, a normal inhabitant of the human oral cavity, is a potential live vaccine vehicle. Several pathogen-associated molecular patterns from that are recognized by antigen-presenting cells have recently been identified. In this study, we have identified that the cell-wall-anchored proteins SspA and SspB are immunostimulatory components of . SspA and SspB are members of the antigen I/II family of proteins widely expressed by viridans oral streptococci. The results showed that the mutant (OB219) lacking SspA and SspB had a reduced ability to induce cytokine/chemokine production in epithelial cells and bone-marrow-derived dendritic cells as compared with the parent strain (DL1). Purified SspA induced interleukin-6 and monocyte chemotatic protein-1 production from human lung epithelial A549 cells. The induction could be inhibited by a function-blocking anti-β1 integrin mAb and the purified SspA could bind to β1 integrin precoated on microtitre plates, suggesting that the induction was effected by SspA–β1 integrin interactions. The role of SspA and SspB in innate immunity was further demonstrated in a mouse intranasal challenge experiment, which showed that the clearance of OB219, the recruitment of neutrophils (as indicated by myeloperoxidase activity), and chemokine and cytokine production in the lungs of OB219-inoculated mice were delayed or reduced as compared with the DL1-inoculated mice. In addition to the above, OB219 was more sensitive to polymyxin, nisin and histatin-5 than DL1, suggesting that SspA and SspB also play a role in susceptibility to cationic antimicrobial peptides. Collectively, the results indicate that SspA and SspB are immunostimulatory components of and play an important role in modulating the host’s innate immunity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.058073-0
2012-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/8/2099.html?itemId=/content/journal/micro/10.1099/mic.0.058073-0&mimeType=html&fmt=ahah

References

  1. Al-Okla S., Chatenay-Rivauday C., Klein J. P., Wachsmann D. ( 1999). Involvement of α5β1 integrins in interleukin 8 production induced by oral viridans streptococcal protein I/IIf in cultured endothelial cells. Cell Microbiol 1:157–168 [View Article][PubMed]
    [Google Scholar]
  2. Chan K. G., Mayer M., Davis E. M., Halperin S. A., Lin T. J., Lee S. F. ( 2007). Role of D-alanylation of Streptococcus gordonii lipoteichoic acid in innate and adaptive immunity. Infect Immun 75:3033–3042 [View Article][PubMed]
    [Google Scholar]
  3. Ciabattini A., Cuppone A. M., Pulimeno R., Iannelli F., Pozzi G., Medaglini D. ( 2006). Stimulation of human monocytes with the gram-positive vaccine vector Streptococcus gordonii . Clin Vaccine Immunol 13:1037–1043 [View Article][PubMed]
    [Google Scholar]
  4. Corinti S., Medaglini D., Cavani A., Rescigno M., Pozzi G., Ricciardi-Castagnoli P., Girolomoni G. ( 1999). Human dendritic cells very efficiently present a heterologous antigen expressed on the surface of recombinant gram-positive bacteria to CD4+ T lymphocytes. J Immunol 163:3029–3036[PubMed]
    [Google Scholar]
  5. Davis E. M., Kennedy D., Halperin S. A., Lee S. F. ( 2011). Role of the cell wall microenvironment in expression of a heterologous SpaP-S1 fusion protein by Streptococcus gordonii . Appl Environ Microbiol 77:1660–1666 [View Article][PubMed]
    [Google Scholar]
  6. Demuth D. R., Duan Y., Brooks W., Holmes A. R., McNab R., Jenkinson H. F. ( 1996). Tandem genes encode cell-surface polypeptides SspA and SspB which mediate adhesion of the oral bacterium Streptococcus gordonii to human and bacterial receptors. Mol Microbiol 20:403–413 [View Article][PubMed]
    [Google Scholar]
  7. Demuth D. R., Irvine D. C., Costerton J. W., Cook G. S., Lamont R. J. ( 2001). Discrete protein determinant directs the species-specific adherence of Porphyromonas gingivalis to oral streptococci. Infect Immun 69:5736–5741 [View Article][PubMed]
    [Google Scholar]
  8. Duan Y., Fisher E., Malamud D., Golub E., Demuth D. R. ( 1994). Calcium-binding properties of SSP-5, the Streptococcus gordonii M5 receptor for salivary agglutinin. Infect Immun 62:5220–5226[PubMed]
    [Google Scholar]
  9. Egland P. G., L. D., Kolenbrander P. E. ( 2001). Identification of independent Streptococcus gordonii SspA and SspB functions in coaggregation with Actinomyces naeslundii . Infect Immun 69:7512–7516 [View Article][PubMed]
    [Google Scholar]
  10. Heddle C., Nobbs A. H., Jakubovics N. S., Gal M., Mansell J. P., Dymock D., Jenkinson H. F. ( 2003). Host collagen signal induces antigen I/II adhesin and invasin gene expression in oral Streptococcus gordonii . Mol Microbiol 50:597–607 [View Article][PubMed]
    [Google Scholar]
  11. Helmerhorst E. J., Troxler R. F., Oppenheim F. G. ( 2001). The human salivary peptide histatin 5 exerts its antifungal activity through the formation of reactive oxygen species. Proc Natl Acad Sci U S A 98:14637–14642 [View Article][PubMed]
    [Google Scholar]
  12. Homonylo-McGavin M. K., Lee S. F. ( 1996). Role of the C terminus in antigen P1 surface localization in Streptococcus mutans and two related cocci. J Bacteriol 178:801–807[PubMed]
    [Google Scholar]
  13. Jakubovics N. S., Strömberg N., van Dolleweerd C. J., Kelly C. G., Jenkinson H. F. ( 2005). Differential binding specificities of oral streptococcal antigen I/II family adhesins for human or bacterial ligands. Mol Microbiol 55:1591–1605 [View Article][PubMed]
    [Google Scholar]
  14. Jenkinson H. F., Demuth D. R. ( 1997). Structure, function and immunogenicity of streptococcal antigen I/II polypeptides. Mol Microbiol 23:183–190 [View Article][PubMed]
    [Google Scholar]
  15. Kawai T., Akira S. ( 2005). Pathogen recognition with Toll-like receptors. Curr Opin Immunol 17:338–344 [View Article][PubMed]
    [Google Scholar]
  16. Kelly C. P., Evans P., Bergmeier L., Lee S. F., Progulske-Fox A., Harris A. C., Aitken A., Bleiweis A. S., Lehner T. ( 1989). Sequence analysis of the cloned streptococcal cell surface antigen I/II. FEBS Lett 258:127–132 [View Article][PubMed]
    [Google Scholar]
  17. Knight J. B., Halperin S. A., West K. A., Lee S. F. ( 2008). Expression of a functional single-chain variable-fragment antibody against complement receptor 1 in Streptococcus gordonii . Clin Vaccine Immunol 15:925–931 [View Article][PubMed]
    [Google Scholar]
  18. Laemmli U. K. ( 1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [View Article][PubMed]
    [Google Scholar]
  19. Lamkin M. S., Oppenheim F. G. ( 1993). Structural features of salivary function. Crit Rev Oral Biol Med 4:251–259[PubMed]
    [Google Scholar]
  20. Lee S. F. ( 2003). Oral colonization and immune responses to Streptococcus gordonii: potential use as a vector to induce antibodies against respiratory pathogens. Curr Opin Infect Dis 16:231–235 [View Article][PubMed]
    [Google Scholar]
  21. Lee S. F., Halperin S. A., Wang H., MacArthur A. ( 2002). Oral colonization and immune responses to Streptococcus gordonii expressing a pertussis toxin S1 fragment in mice. FEMS Microbiol Lett 208:175–178 [View Article][PubMed]
    [Google Scholar]
  22. Ma J. K. C., Kelly C. G., Munro G., Whiley R. A., Lehner T. ( 1991). Conservation of the gene encoding streptococcal antigen I/II in oral streptococci. Infect Immun 59:2686–2694[PubMed]
    [Google Scholar]
  23. Mallaley P. P., Halperin S. A., Morris A., MacMillian A., Lee S. F. ( 2006). Expression of a pertussis toxin S1 fragment by inducible promoters in oral Streptococcus and the induction of immune responses during oral colonization in mice. Can J Microbiol 52:436–444 [View Article][PubMed]
    [Google Scholar]
  24. Mathews M., Jia H. P., Guthmiller J. M., Losh G., Graham S., Johnson G. K., Tack B. F., McCray P. B. Jr ( 1999). Production of beta-defensin antimicrobial peptides by the oral mucosa and salivary glands. Infect Immun 67:2740–2745[PubMed]
    [Google Scholar]
  25. Mayer M. L., Phillips C. M., Stadnyk A. W., Halperin S. A., Lee S. F. ( 2009a). Synergistic BM-DC activation and immune induction by the oral vaccine vector Streptococcus gordonii and exogenous tumor necrosis factor. Mol Immunol 46:1883–1891 [View Article][PubMed]
    [Google Scholar]
  26. Mayer M. L., Phillips C. M., Townsend R. A., Halperin S. A., Lee S. F. ( 2009b). Differential activation of dendritic cells by Toll-like receptor agonists isolated from the Gram-positive vaccine vector Streptococcus gordonii . Scand J Immunol 69:351–356 [View Article][PubMed]
    [Google Scholar]
  27. Neff L., Zeisel M., Druet V., Takeda K., Klein J. P., Sibilia J., Wachsmann D. ( 2003). ERK 1/2- and JNKs-dependent synthesis of interleukins 6 and 8 by fibroblast-like synoviocytes stimulated with protein I/II, a modulin from oral streptococci, requires focal adhesion kinase. J Biol Chem 278:27721–27728 [View Article][PubMed]
    [Google Scholar]
  28. Nobbs A. H., Shearer B. H., Drobni M., Jepson M. A., Jenkinson H. F. ( 2007). Adherence and internalization of Streptococcus gordonii by epithelial cells involves β1 integrin recognition by SspA and SspB (antigen I/II family) polypeptides. Cell Microbiol 9:65–83 [View Article][PubMed]
    [Google Scholar]
  29. Oggioni M. R., Medaglini D., Maggi T., Pozzi G. ( 1999). Engineering the gram-positive cell surface for construction of bacterial vaccine vectors. Methods 19:163–173 [View Article][PubMed]
    [Google Scholar]
  30. Peterson S., Cline R. T., Tettelin H., Sharov V., Morrison D. A. ( 2000). Gene expression analysis of the Streptococcus pneumoniae competence regulons by use of DNA microarrays. J Bacteriol 182:6192–6202 [View Article][PubMed]
    [Google Scholar]
  31. Rydengård V., Andersson Nordahl E., Schmidtchen A. ( 2006). Zinc potentiates the antibacterial effects of histidine-rich peptides against Enterococcus faecalis . FEBS J 273:2399–2406 [View Article][PubMed]
    [Google Scholar]
  32. Standiford T. J., Kunkel S. L., Phan S. H., Rollins B. J., Strieter R. M. ( 1991). Alveolar macrophage-derived cytokines induce monocyte chemoattractant protein-1 expression from human pulmonary type II-like epithelial cells. J Biol Chem 266:9912–9918[PubMed]
    [Google Scholar]
  33. Tremblay Y. D., Lo H., Li Y. H., Halperin S. A., Lee S. F. ( 2009). Expression of the Streptococcus mutans essential two-component regulatory system VicRK is pH and growth-phase dependent and controlled by the LiaFSR three-component regulatory system. Microbiology 155:2856–2865 [View Article][PubMed]
    [Google Scholar]
  34. Vernier-Georgenthum A., al-Okla S., Gourieux B., Klein J. P., Wachsmann D. ( 1998). Protein I/II of oral viridans streptococci increases expression of adhesion molecules on endothelial cells and promotes transendothelial migration of neutrophils in vitro. Cell Immunol 187:145–150 [View Article][PubMed]
    [Google Scholar]
  35. Zeisel M. B., Druet V. A., Sibilia J., Klein J. P., Quesniaux V., Wachsmann D. ( 2005). Cross talk between MyD88 and focal adhesion kinase pathways. J Immunol 174:7393–7397[PubMed] [CrossRef]
    [Google Scholar]
  36. Zhou X., Chen Q., Moore J., Kolls J. K., Halperin S., Wang J. ( 2009). Critical role of the interleukin-17/interleukin-17 receptor axis in regulating host susceptibility to respiratory infection with Chlamydia species. Infect Immun 77:5059–5070 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.058073-0
Loading
/content/journal/micro/10.1099/mic.0.058073-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error