1887

Abstract

Copper is an essential cofactor of various enzymes, but free copper is highly toxic to living cells. To maintain cellular metabolism at different ambient copper concentrations, bacteria have evolved specific copper homeostasis systems that mostly act as defence mechanisms. As well as under free-living conditions, copper defence is critical for virulence in pathogenic bacteria. Most bacteria synthesize P-type copper export ATPases as principal defence determinants when copper concentrations exceed favourable levels. In addition, many bacteria utilize resistance-nodulation-cell division (RND)-type efflux systems and multicopper oxidases to cope with excess copper. This review summarizes our current knowledge on copper-sensing transcriptional regulators, which we assign to nine different classes. Widespread one-component regulators are CueR, CopY and CsoR, which were initially identified in , and , respectively. CueR activates homeostasis gene expression at elevated copper concentrations, while CopY and CsoR repress their target genes under copper-limiting conditions. Besides these one-component systems, which sense the cytoplasmic copper status, many Gram-negative bacteria utilize two-component systems, which sense periplasmic copper concentrations. In addition to these well-studied transcriptional factors, copper control mechanisms acting at the post-transcriptional and the post-translational levels will be discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.058487-0
2012-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/10/2451.html?itemId=/content/journal/micro/10.1099/mic.0.058487-0&mimeType=html&fmt=ahah

References

  1. Adaikkalam V., Swarup S. ( 2002). Molecular characterization of an operon, cueAR, encoding a putative P1-type ATPase and a MerR-type regulatory protein involved in copper homeostasis in Pseudomonas putida . Microbiology 148:2857–2867[PubMed]
    [Google Scholar]
  2. Andoy N. M., Sarkar S. K., Wang Q., Panda D., Benítez J. J., Kalininskiy A., Chen P. ( 2009). Single-molecule study of metalloregulator CueR-DNA interactions using engineered Holliday junctions. Biophys J 97:844–852 [View Article][PubMed]
    [Google Scholar]
  3. Argüello J. M., González-Guerrero M., Raimunda D. ( 2011). Bacterial transition metal P1B-ATPases: transport mechanism and roles in virulence. Biochemistry 50:9940–9949 [View Article][PubMed]
    [Google Scholar]
  4. Arredondo M., Núñez M. T. ( 2005). Iron and copper metabolism. Mol Aspects Med 26:313–327 [View Article][PubMed]
    [Google Scholar]
  5. Barnham K. J., Bush A. I. ( 2008). Metals in Alzheimer’s and Parkinson’s diseases. Curr Opin Chem Biol 12:222–228 [View Article][PubMed]
    [Google Scholar]
  6. Brown N. L., Barrett S. R., Camakaris J., Lee B. T., Rouch D. A. ( 1995). Molecular genetics and transport analysis of the copper-resistance determinant (pco) from Escherichia coli plasmid pRJ1004. Mol Microbiol 17:1153–1166 [View Article][PubMed]
    [Google Scholar]
  7. Brown N. L., Stoyanov J. V., Kidd S. P., Hobman J. L. ( 2003). The MerR family of transcriptional regulators. FEMS Microbiol Rev 27:145–163 [View Article][PubMed]
    [Google Scholar]
  8. Busenlehner L. S., Pennella M. A., Giedroc D. P. ( 2003). The SmtB/ArsR family of metalloregulatory transcriptional repressors: structural insights into prokaryotic metal resistance. FEMS Microbiol Rev 27:131–143 [View Article][PubMed]
    [Google Scholar]
  9. Cha J.-S., Cooksey D. A. ( 1993). Copper hypersensitivity and uptake in Pseudomonas syringae containing cloned components of the copper resistance operon. Appl Environ Microbiol 59:1671–1674[PubMed]
    [Google Scholar]
  10. Changela A., Chen K., Xue Y., Holschen J., Outten C. E., O’Halloran T. V., Mondragón A. ( 2003). Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. Science 301:1383–1387 [View Article][PubMed]
    [Google Scholar]
  11. Chen K., Yuldasheva S., Penner-Hahn J. E., O’Halloran T. V. ( 2003). An atypical linear Cu(I)–S2 center constitutes the high-affinity metal-sensing site in the CueR metalloregulatory protein. J Am Chem Soc 125:12088–12089 [View Article][PubMed]
    [Google Scholar]
  12. Chillappagari S., Miethke M., Trip H., Kuipers O. P., Marahiel M. A. ( 2009). Copper acquisition is mediated by YcnJ and regulated by YcnK and CsoR in Bacillus subtilis . J Bacteriol 191:2362–2370 [View Article][PubMed]
    [Google Scholar]
  13. Chillappagari S., Seubert A., Trip H., Kuipers O. P., Marahiel M. A., Miethke M. ( 2010). Copper stress affects iron homeostasis by destabilizing iron-sulfur cluster formation in Bacillus subtilis . J Bacteriol 192:2512–2524 [View Article][PubMed]
    [Google Scholar]
  14. Cobine P., Wickramasinghe W. A., Harrison M. D., Weber T., Solioz M., Dameron C. T. ( 1999). The Enterococcus hirae copper chaperone CopZ delivers copper(I) to the CopY repressor. FEBS Lett 445:27–30 [View Article][PubMed]
    [Google Scholar]
  15. Cobine P. A., George G. N., Jones C. E., Wickramasinghe W. A., Solioz M., Dameron C. T. ( 2002). Copper transfer from the Cu(I) chaperone, CopZ, to the repressor, Zn(II)CopY: metal coordination environments and protein interactions. Biochemistry 41:5822–5829 [View Article][PubMed]
    [Google Scholar]
  16. Corbett D., Schuler S., Glenn S., Andrew P. W., Cavet J. S., Roberts I. S. ( 2011). The combined actions of the copper-responsive repressor CsoR and copper-metallochaperone CopZ modulate CopA-mediated copper efflux in the intracellular pathogen Listeria monocytogenes . Mol Microbiol 81:457–472 [View Article][PubMed]
    [Google Scholar]
  17. Dwarakanath S., Chaplin A. K., Hough M. A., Rigali S., Vijgenboom E., Worrall J. A. R. ( 2012). Response to copper stress in Streptomyces lividans extends beyond genes under direct control of a copper-sensitive operon repressor protein (CsoR). J Biol Chem 287:17833–17847 [View Article][PubMed]
    [Google Scholar]
  18. Espariz M., Checa S. K., Audero M. E., Pontel L. B., Soncini F. C. ( 2007). Dissecting the Salmonella response to copper. Microbiology 153:2989–2997 [View Article][PubMed]
    [Google Scholar]
  19. Festa R. A., Jones M. B., Butler-Wu S., Sinsimer D., Gerads R., Bishai W. R., Peterson S. N., Darwin K. H. ( 2011). A novel copper-responsive regulon in Mycobacterium tuberculosis . Mol Microbiol 79:133–148 [View Article][PubMed]
    [Google Scholar]
  20. Franke S., Grass G., Rensing C., Nies D. H. ( 2003). Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli . J Bacteriol 185:3804–3812 [View Article][PubMed]
    [Google Scholar]
  21. Gaballa A., Cao M., Helmann J. D. ( 2003). Two MerR homologues that affect copper induction of the Bacillus subtilis copZA operon. Microbiology 149:3413–3421 [View Article][PubMed]
    [Google Scholar]
  22. Giner-Lamia J., López-Maury L., Reyes J. C., Florencio F. J. ( 2012). The CopRS two-component system is responsible for resistance to copper in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol 159:1806–1818 [View Article][PubMed]
    [Google Scholar]
  23. Gómez-Santos N., Pérez J., Sánchez-Sutil M. C., Moraleda-Muñoz A., Muñoz-Dorado J. ( 2011). CorE from Myxococcus xanthus is a copper-dependent RNA polymerase sigma factor. PLoS Genet 7:e1002106 [View Article][PubMed]
    [Google Scholar]
  24. González-Guerrero M., Raimunda D., Cheng X., Argüello J. M. ( 2010). Distinct functional roles of homologous Cu+ efflux ATPases in Pseudomonas aeruginosa . Mol Microbiol 78:1246–1258 [View Article][PubMed]
    [Google Scholar]
  25. Grass G., Rensing C. ( 2001). Genes involved in copper homeostasis in Escherichia coli . J Bacteriol 183:2145–2147 [View Article][PubMed]
    [Google Scholar]
  26. Grass G., Thakali K., Klebba P. E., Thieme D., Müller A., Wildner G. F., Rensing C. ( 2004). Linkage between catecholate siderophores and the multicopper oxidase CueO in Escherichia coli . J Bacteriol 186:5826–5833 [View Article][PubMed]
    [Google Scholar]
  27. Grass G., Rensing C., Solioz M. ( 2011). Metallic copper as an antimicrobial surface. Appl Environ Microbiol 77:1541–1547 [View Article][PubMed]
    [Google Scholar]
  28. Grossoehme N., Kehl-Fie T. E., Ma Z., Adams K. W., Cowart D. M., Scott R. A., Skaar E. P., Giedroc D. P. ( 2011). Control of copper resistance and inorganic sulfur metabolism by paralogous regulators in Staphylococcus aureus . J Biol Chem 286:13522–13531 [View Article][PubMed]
    [Google Scholar]
  29. Gudipaty S. A., Larsen A. S., Rensing C., McEvoy M. M. ( 2012). Regulation of Cu(I)/Ag(I) efflux genes in Escherichia coli by the sensor kinase CusS. FEMS Microbiol Lett 330:30–37 [View Article][PubMed]
    [Google Scholar]
  30. Hiniker A., Collet J. F., Bardwell J. C. ( 2005). Copper stress causes an in vivo requirement for the Escherichia coli disulfide isomerase DsbC. J Biol Chem 280:33785–33791 [View Article][PubMed]
    [Google Scholar]
  31. Keijser B. J., van Wezel G. P., Canters G. W., Kieser T., Vijgenboom E. ( 2000). The ram-dependence of Streptomyces lividans differentiation is bypassed by copper. J Mol Microbiol Biotechnol 2:565–574[PubMed]
    [Google Scholar]
  32. Kershaw C. J., Brown N. L., Constantinidou C., Patel M. D., Hobman J. L. ( 2005). The expression profile of Escherichia coli K-12 in response to minimal, optimal and excess copper concentrations. Microbiology 151:1187–1198 [View Article][PubMed]
    [Google Scholar]
  33. Kim J. S., Kim M. H., Joe M. H., Song S. S., Lee I. S., Choi S. Y. ( 2002). The sctR of Salmonella enterica serova Typhimurium encoding a homologue of MerR protein is involved in the copper-responsive regulation of cuiD . FEMS Microbiol Lett 210:99–103 [View Article][PubMed]
    [Google Scholar]
  34. Lenartowicz M., Starzyński R., Wieczerzak K., Krzeptowski W., Lipiński P., Styrna J. ( 2011). Alterations in the expression of the Atp7a gene in the early postnatal development of the mosaic mutant mice (Atp7a mo-ms) – an animal model for Menkes disease. Gene Expr Patterns 11:41–47 [View Article][PubMed]
    [Google Scholar]
  35. Liu T., Nakashima S., Hirose K., Shibasaka M., Katsuhara M., Ezaki B., Giedroc D. P., Kasamo K. ( 2004). A novel cyanobacterial SmtB/ArsR family repressor regulates the expression of a CPx-ATPase and a metallothionein in response to both Cu(I)/Ag(I) and Zn(II)/Cd(II). J Biol Chem 279:17810–17818 [View Article][PubMed]
    [Google Scholar]
  36. Liu T., Ramesh A., Ma Z., Ward S. K., Zhang L., George G. N., Talaat A. M., Sacchettini J. C., Giedroc D. P. ( 2007). CsoR is a novel Mycobacterium tuberculosis copper-sensing transcriptional regulator. Nat Chem Biol 3:60–68 [View Article][PubMed]
    [Google Scholar]
  37. Liu T., Chen X., Ma Z., Shokes J., Hemmingsen L., Scott R. A., Giedroc D. P. ( 2008). A CuI-sensing ArsR family metal sensor protein with a relaxed metal selectivity profile. Biochemistry 47:10564–10575 [View Article][PubMed]
    [Google Scholar]
  38. Long F., Su C. C., Zimmermann M. T., Boyken S. E., Rajashankar K. R., Jernigan R. L., Yu E. W. ( 2010). Crystal structures of the CusA efflux pump suggest methionine-mediated metal transport. Nature 467:484–488 [View Article][PubMed]
    [Google Scholar]
  39. Lu Z. H., Solioz M. ( 2001). Copper-induced proteolysis of the CopZ copper chaperone of Enterococcus hirae . J Biol Chem 276:47822–47827[PubMed]
    [Google Scholar]
  40. Lübben M., Portmann R., Kock G., Stoll R., Young M. M., Solioz M. ( 2009). Structural model of the CopA copper ATPase of Enterococcus hirae based on chemical cross-linking. Biometals 22:363–375 [View Article][PubMed]
    [Google Scholar]
  41. Lutsenko S. ( 2010). Human copper homeostasis: a network of interconnected pathways. Curr Opin Chem Biol 14:211–217 [View Article][PubMed]
    [Google Scholar]
  42. Macomber L., Imlay J. A. ( 2009). The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc Natl Acad Sci U S A 106:8344–8349 [View Article][PubMed]
    [Google Scholar]
  43. Magnani D., Barré O., Gerber S. D., Solioz M. ( 2008). Characterization of the CopR regulon of Lactococcus lactis IL1403. J Bacteriol 190:536–545 [View Article][PubMed]
    [Google Scholar]
  44. Mermod M., Magnani D., Solioz M., Stoyanov J. V. ( 2012). The copper-inducible ComR (YcfQ) repressor regulates expression of ComC (YcfR), which affects copper permeability of the outer membrane of Escherichia coli . Biometals 25:33–43 [View Article][PubMed]
    [Google Scholar]
  45. Mills S. D., Jasalavich C. A., Cooksey D. A. ( 1993). A two-component regulatory system required for copper-inducible expression of the copper resistance operon of Pseudomonas syringae . J Bacteriol 175:1656–1664[PubMed]
    [Google Scholar]
  46. Mitrakul K., Loo C. Y., Hughes C. V., Ganeshkumar N. ( 2004). Role of a Streptococcus gordonii copper-transport operon, copYAZ, in biofilm detachment. Oral Microbiol Immunol 19:395–402 [View Article][PubMed]
    [Google Scholar]
  47. Multhaup G., Strausak D., Bissig K.-D., Solioz M. ( 2001). Interaction of the CopZ copper chaperone with the CopA copper ATPase of Enterococcus hirae assessed by surface plasmon resonance. Biochem Biophys Res Commun 288:172–177 [View Article][PubMed]
    [Google Scholar]
  48. Nawapan S., Charoenlap N., Charoenwuttitam A., Saenkham P., Mongkolsuk S., Vattanaviboon P. ( 2009). Functional and expression analyses of the cop operon, required for copper resistance in Agrobacterium tumefaciens . J Bacteriol 191:5159–5168 [View Article][PubMed]
    [Google Scholar]
  49. Odermatt A., Solioz M. ( 1995). Two trans-acting metalloregulatory proteins controlling expression of the copper-ATPases of Enterococcus hirae . J Biol Chem 270:4349–4354 [View Article][PubMed]
    [Google Scholar]
  50. Odermatt A., Krapf R., Solioz M. ( 1994). Induction of the putative copper ATPases, CopA and CopB, of Enterococcus hirae by Ag+ and Cu2+, and Ag+ extrusion by CopB. Biochem Biophys Res Commun 202:44–48 [View Article][PubMed]
    [Google Scholar]
  51. Outten F. W., Outten C. E., Hale J., O’Halloran T. V. ( 2000). Transcriptional activation of an Escherichia coli copper efflux regulon by the chromosomal MerR homologue, CueR. J Biol Chem 275:31024–31029 [View Article][PubMed]
    [Google Scholar]
  52. Outten F. W., Huffman D. L., Hale J. A., O’Halloran T. V. ( 2001). The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli . J Biol Chem 276:30670–30677 [View Article][PubMed]
    [Google Scholar]
  53. Palmer T., Berks B. C. ( 2012). The twin-arginine translocation (Tat) protein export pathway. Nat Rev Microbiol 10:483–496[PubMed]
    [Google Scholar]
  54. Peuser V., Glaeser J., Klug G. ( 2011). The RSP_2889 gene product of Rhodobacter sphaeroides is a CueR homologue controlling copper-responsive genes. Microbiology 157:3306–3313 [View Article][PubMed]
    [Google Scholar]
  55. Pontel L. B., Soncini F. C. ( 2009). Alternative periplasmic copper-resistance mechanisms in Gram negative bacteria. Mol Microbiol 73:212–225 [View Article][PubMed]
    [Google Scholar]
  56. Pontel L. B., Audero M. E., Espariz M., Checa S. K., Soncini F. C. ( 2007). GolS controls the response to gold by the hierarchical induction of Salmonella-specific genes that include a CBA efflux-coding operon. Mol Microbiol 66:814–825 [View Article][PubMed]
    [Google Scholar]
  57. Portmann R., Poulsen K. R., Wimmer R., Solioz M. ( 2006). CopY-like copper inducible repressors are putative ‘winged helix’ proteins. Biometals 19:61–70 [View Article][PubMed]
    [Google Scholar]
  58. Quaranta D., McEvoy M. M., Rensing C. ( 2009). Site-directed mutagenesis identifies a molecular switch involved in copper sensing by the histidine kinase CinS in Pseudomonas putida KT2440. J Bacteriol 191:5304–5311 [View Article][PubMed]
    [Google Scholar]
  59. Rademacher C., Moser R., Lackmann J.-W., Klinkert B., Narberhaus F., Masepohl B. ( 2012). Transcriptional and posttranscriptional events control copper-responsive expression of a Rhodobacter capsulatus multicopper oxidase. J Bacteriol 194:1849–1859 [View Article][PubMed]
    [Google Scholar]
  60. Rensing C., Grass G. ( 2003). Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol Rev 27:197–213 [View Article][PubMed]
    [Google Scholar]
  61. Rensing C., Fan B., Sharma R., Mitra B., Rosen B. P. ( 2000). CopA: an Escherichia coli Cu(I)-translocating P-type ATPase. Proc Natl Acad Sci U S A 97:652–656 [View Article][PubMed]
    [Google Scholar]
  62. Reyes-Jara A., Latorre M., López G., Bourgogne A., Murray B. E., Cambiazo V., González M. ( 2010). Genome-wide transcriptome analysis of the adaptive response of Enterococcus faecalis to copper exposure. Biometals 23:1105–1112 [View Article][PubMed]
    [Google Scholar]
  63. Sakamoto K., Agari Y., Agari K., Kuramitsu S., Shinkai A. ( 2010). Structural and functional characterization of the transcriptional repressor CsoR from Thermus thermophilus HB8. Microbiology 156:1993–2005 [View Article][PubMed]
    [Google Scholar]
  64. Schelder S., Zaade D., Litsanov B., Bott M., Brocker M. ( 2011). The two-component signal transduction system CopRS of Corynebacterium glutamicum is required for adaptation to copper-excess stress. PLoS ONE 6:e22143 [View Article][PubMed]
    [Google Scholar]
  65. Schwan W. R., Warrener P., Keunz E., Stover C. K., Folger K. R. ( 2005). Mutations in the cueA gene encoding a copper homeostasis P-type ATPase reduce the pathogenicity of Pseudomonas aeruginosa in mice. Int J Med Microbiol 295:237–242 [View Article][PubMed]
    [Google Scholar]
  66. Shafeeq S., Yesilkaya H., Kloosterman T. G., Narayanan G., Wandel M., Andrew P. W., Kuipers O. P., Morrissey J. A. ( 2011). The cop operon is required for copper homeostasis and contributes to virulence in Streptococcus pneumoniae . Mol Microbiol 81:1255–1270 [View Article][PubMed]
    [Google Scholar]
  67. Singh S. K., Grass G., Rensing C., Montfort W. R. ( 2004). Cuprous oxidase activity of CueO from Escherichia coli . J Bacteriol 186:7815–7817 [View Article][PubMed]
    [Google Scholar]
  68. Smaldone G. T., Helmann J. D. ( 2007). CsoR regulates the copper efflux operon copZA in Bacillus subtilis . Microbiology 153:4123–4128 [View Article][PubMed]
    [Google Scholar]
  69. Solioz M. ( 2002). Role of proteolysis in copper homoeostasis. Biochem Soc Trans 30:688–691 [View Article][PubMed]
    [Google Scholar]
  70. Solioz M., Stoyanov J. V. ( 2003). Copper homeostasis in Enterococcus hirae . FEMS Microbiol Rev 27:183–195 [View Article][PubMed]
    [Google Scholar]
  71. Solioz M., Abicht H. K., Mermod M., Mancini S. ( 2010). Response of Gram-positive bacteria to copper stress. J Biol Inorg Chem 15:3–14 [View Article][PubMed]
    [Google Scholar]
  72. Stoyanov J. V., Hobman J. L., Brown N. L. ( 2001). CueR (YbbI) of Escherichia coli is a MerR family regulator controlling expression of the copper exporter CopA. Mol Microbiol 39:502–512 [View Article][PubMed]
    [Google Scholar]
  73. Strausak D., Solioz M. ( 1997). CopY is a copper-inducible repressor of the Enterococcus hirae copper ATPases. J Biol Chem 272:8932–8936 [View Article][PubMed]
    [Google Scholar]
  74. Teitzel G. M., Geddie A., De Long S. K., Kirisits M. J., Whiteley M., Parsek M. R. ( 2006). Survival and growth in the presence of elevated copper: transcriptional profiling of copper-stressed Pseudomonas aeruginosa . J Bacteriol 188:7242–7256 [View Article][PubMed]
    [Google Scholar]
  75. Thaden J. T., Lory S., Gardner T. S. ( 2010). Quorum-sensing regulation of a copper toxicity system in Pseudomonas aeruginosa . J Bacteriol 192:2557–2568 [View Article][PubMed]
    [Google Scholar]
  76. Vats N., Lee S. F. ( 2001). Characterization of a copper-transport operon, copYAZ, from Streptococcus mutans . Microbiology 147:653–662[PubMed]
    [Google Scholar]
  77. Voloudakis A. E., Reignier T. M., Cooksey D. A. ( 2005). Regulation of resistance to copper in Xanthomonas axonopodis pv. vesicatoria . Appl Environ Microbiol 71:782–789 [View Article][PubMed]
    [Google Scholar]
  78. Waidner B., Melchers K., Stähler F. N., Kist M., Bereswill S. ( 2005). The Helicobacter pylori CrdRS two-component regulation system (HP1364/HP1365) is required for copper-mediated induction of the copper resistance determinant CrdA. J Bacteriol 187:4683–4688 [View Article][PubMed]
    [Google Scholar]
  79. Ward S. K., Abomoelak B., Hoye E. A., Steinberg H., Talaat A. M. ( 2010). CtpV: a putative copper exporter required for full virulence of Mycobacterium tuberculosis . Mol Microbiol 77:1096–1110 [View Article][PubMed]
    [Google Scholar]
  80. Wiethaus J., Wildner G. F., Masepohl B. ( 2006). The multicopper oxidase CutO confers copper tolerance to Rhodobacter capsulatus . FEMS Microbiol Lett 256:67–74 [View Article][PubMed]
    [Google Scholar]
  81. Yamamoto K., Ishihama A. ( 2005). Transcriptional response of Escherichia coli to external copper. Mol Microbiol 56:215–227 [View Article][PubMed]
    [Google Scholar]
  82. Yamamoto K., Ishihama A. ( 2006). Characterization of copper-inducible promoters regulated by CpxA/CpxR in Escherichia coli . Biosci Biotechnol Biochem 70:1688–1695 [View Article][PubMed]
    [Google Scholar]
  83. Yamamoto K., Hirao K., Oshima T., Aiba H., Utsumi R., Ishihama A. ( 2005). Functional characterization in vitro of all two-component signal transduction systems from Escherichia coli . J Biol Chem 280:1448–1456 [View Article][PubMed]
    [Google Scholar]
  84. Zhang X.-X., Rainey P. B. ( 2008). Regulation of copper homeostasis in Pseudomonas fluorescens SBW25. Environ Microbiol 10:3284–3294 [View Article][PubMed]
    [Google Scholar]
  85. Zhang L., McSpadden B., Pakrasi H. B., Whitmarsh J. ( 1992). Copper-mediated regulation of cytochrome c 553 and plastocyanin in the cyanobacterium Synechocystis 6803. J Biol Chem 267:19054–19059[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.058487-0
Loading
/content/journal/micro/10.1099/mic.0.058487-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error