1887

Abstract

, originally isolated from honeybee intestine, was found to grow under 20 % O conditions in liquid shaking culture using MRS broth. Catalase activity was detected only in cells that were exposed to O and grown in medium containing a haem source, and these cells showed higher viability on exposure to HO. Passage through multiple column chromatography steps enabled purification of the active protein, which was identified as a homologue of haem catalase on the basis of its N-terminal sequence. The enzyme is a homodimer composed of a subunit with a molecular mass of 55 kDa, and the absorption spectrum shows the typical profile of bacterial haem catalase. A gene encoding haem catalase, which has an amino acid sequence coinciding with the N-terminal amino acid sequence of the purified protein, was found in the draft genome sequence data of . Expression of the gene was induced in response to O exposure. The haem catalase from shows about 70–80 % identity with those from lactobacilli and other lactic acid bacteria, and no homologues were found in other bifidobacterial genomes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.059741-0
2013-01-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/1/89.html?itemId=/content/journal/micro/10.1099/mic.0.059741-0&mimeType=html&fmt=ahah

References

  1. Abriouel H., Herrmann A., Stärke J., Yousif N. M., Wijaya A., Tauscher B., Holzapfel W., Franz C. M. ( 2004). Cloning and heterologous expression of hematin-dependent catalase produced by Lactobacillus plantarum CNRZ 1228. Appl Environ Microbiol 70:603–606 [View Article][PubMed]
    [Google Scholar]
  2. Bradford M. M. ( 1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 [View Article][PubMed]
    [Google Scholar]
  3. de Vries W., Stouthamer A. H. ( 1969). Factors determining the degree of anaerobiosis of Bifidobacterium strains. Arch Mikrobiol 65:275–287 [View Article][PubMed]
    [Google Scholar]
  4. Dos Santos W. G., Pacheco I., Liu M. Y., Teixeira M., Xavier A. V., LeGall J. ( 2000). Purification and characterization of an iron superoxide dismutase and a catalase from the sulfate-reducing bacterium Desulfovibrio gigas . J Bacteriol 182:796–804 [View Article][PubMed]
    [Google Scholar]
  5. Frankenberg L., Brugna M., Hederstedt L. ( 2002). Enterococcus faecalis heme-dependent catalase. J Bacteriol 184:6351–6356[PubMed] [CrossRef]
    [Google Scholar]
  6. Jones D., Collins M. D. ( 1986). Irregular, nonsporing Gram-positive rods. Bergey’s Manual of Systematic Bacteriology1261–1434 Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Baltimore: Williams and Wilkins Co;
    [Google Scholar]
  7. Kawasaki S. ( 2011). Response of Bifidobacterium species to oxygen. Lactic Acid Bacteria and Bifidobacteria103–110 Sonomoto K., Yokota A. Norfolk, UK: Caister Academic Press;
    [Google Scholar]
  8. Kawasaki S., Watamura Y., Ono M., Watanabe T., Takeda K., Niimura Y. ( 2005). Adaptive responses to oxygen stress in obligatory anaerobes Clostridium acetobutylicum and Clostridium aminovalericum . Appl Environ Microbiol 71:8442–8450 [View Article][PubMed]
    [Google Scholar]
  9. Kawasaki S., Mimura T., Satoh T., Takeda K., Niimura Y. ( 2006). Response of the microaerophilic Bifidobacterium species, B. boum and B. thermophilum, to oxygen. Appl Environ Microbiol 72:6854–6858 [View Article][PubMed]
    [Google Scholar]
  10. Kawasaki S., Nagasaku M., Mimura T., Katashima H., Ijyuin S., Satoh T., Niimura Y. ( 2007). Effect of CO2 on colony development by Bifidobacterium species. Appl Environ Microbiol 73:7796–7798 [View Article][PubMed]
    [Google Scholar]
  11. Kawasaki S., Satoh T., Todoroki M., Niimura Y. ( 2009). b-Type dihydroorotate dehydrogenase is purified as a H2O2-forming NADH oxidase from Bifidobacterium bifidum . Appl Environ Microbiol 75:629–636 [View Article][PubMed]
    [Google Scholar]
  12. Killer J., Kopecný J., Mrázek J., Rada V., Benada O., Koppová I., Havlík J., Straka J. ( 2009). Bifidobacterium bombi sp. nov., from the bumblebee digestive tract. Int J Syst Evol Microbiol 59:2020–2024 [View Article][PubMed]
    [Google Scholar]
  13. Killer J., Kopečný J., Mrázek J., Koppová I., Havlík J., Benada O., Kott T. ( 2011). Bifidobacterium actinocoloniiforme sp. nov. and Bifidobacterium bohemicum sp. nov., from the bumblebee digestive tract. Int J Syst Evol Microbiol 61:1315–1321[PubMed] [CrossRef]
    [Google Scholar]
  14. Knauf H. J., Vogel R. F., Hammes W. P. ( 1992). Cloning, sequence and phenotype expression of katA, which encodes the catalase of Lactobacillus sake LTH677. Appl Environ Microbiol 58:832–839[PubMed]
    [Google Scholar]
  15. Meile L., Ludwig W., Rueger U., Gut C., Kaufmann P., Dasen G., Wenger S., Teuber M. ( 1997). Bifidobacterium lactis sp. nov., a moderately oxygen-tolerant species isolated from fermented milk. Syst Appl Microbiol 20:57–64[PubMed] [CrossRef]
    [Google Scholar]
  16. Mozzetti V., Grattepanche F., Moine D., Berger B., Rezzonico E., Meile L., Arigoni F., Lacroix C. ( 2010). New method for selection of hydrogen peroxide adapted bifidobacteria cells using continuous culture and immobilized cell technology. Microb Cell Fact 9:60 [View Article][PubMed]
    [Google Scholar]
  17. Rocha E. R., Smith C. J. ( 1995). Biochemical and genetic analyses of a catalase from the anaerobic bacterium Bacteroides fragilis . J Bacteriol 177:3111–3119[PubMed]
    [Google Scholar]
  18. Scardovi V., Trovatelli L. D. ( 1969). New species of bifido bacteria from Apis mellifica L. and Apis indica F. A contribution to the taxonomy and biochemistry of the genus Bifidobacterium . Zentralbl Bakteriol Parasitenkd Infektionskr Hyg 123:64–88[PubMed]
    [Google Scholar]
  19. Shimamura S., Abe F., Ishibashi N., Miyakawa H., Yaeshima T., Tomita M. ( 1990). Endogenous oxygen uptake and polysaccharide accumulation in Bifidobacterium . Agric Biol Chem 54:2869–2874 [View Article]
    [Google Scholar]
  20. Shimamura S., Abe F., Ishibashi N., Miyakawa H., Yaeshima T., Araya T., Tomita M. ( 1992). Relationship between oxygen sensitivity and oxygen metabolism of Bifidobacterium species. J Dairy Sci 75:3296–3306 [View Article][PubMed]
    [Google Scholar]
  21. Simpson P. J., Ross R. P., Fitzgerald G. F., Stanton C. ( 2004). Bifidobacterium psychraerophilum sp. nov. and Aeriscardovia aeriphila gen. nov., sp. nov., isolated from a porcine caecum. Int J Syst Evol Microbiol 54:401–406 [View Article][PubMed]
    [Google Scholar]
  22. Simpson P. J., Stanton C., Fitzgerald G. F., Ross R. P. ( 2005). Intrinsic tolerance of Bifidobacterium species to heat and oxygen and survival following spray drying and storage. J Appl Microbiol 99:493–501 [View Article][PubMed]
    [Google Scholar]
  23. Switala J., Loewen P. C. ( 2002). Diversity of properties among catalases. Arch Biochem Biophys 401:145–154 [View Article][PubMed]
    [Google Scholar]
  24. Whittenbury R. ( 1964). Hydrogen peroxide formation and catalase activity in the lactic acid bacteria. J Gen Microbiol 35:13–26 [View Article][PubMed]
    [Google Scholar]
  25. Wolf G., Hammes W. P. ( 1988). Effect of hematin on the activities of nitrite reductase and catalase in lactobacilli. Arch Microbiol 149:220–224 [View Article]
    [Google Scholar]
  26. Wolf G., Strahl A., Meisel J., Hammes W. P. ( 1991). Heme-dependent catalase activity of lactobacilli. Int J Food Microbiol 12:133–140[PubMed] [CrossRef]
    [Google Scholar]
  27. Zerbino D. R., Birney E. ( 2008). Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.059741-0
Loading
/content/journal/micro/10.1099/mic.0.059741-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error