1887

Abstract

In order to identify genetic contributions to boric acid (BA) resistance, a yeast knockout collection was screened for BA-sensitive mutants. Prominent among the BA-sensitive mutants were strains with defects in the cytoplasmic part of the high osmolarity/glycerol (HOG) signalling pathway, the trehalose-synthesis pathway (/) and the copper–zinc superoxide dismutase An analysis of HOG-pathway mutants and fluorescence microscopy of Hog1–GFP fusions showed that the non-redundant cytoplasmic components of the pathway, Pbs2p and Hog1p, are required to maintain BA resistance, but that import of the activated Hog1p kinase into the nucleus neither occurs during BA stress nor is necessary for wild-type-like BA tolerance. Pbs2p and Hog1p are also required to support normal morphogenesis during BA stress as their absence leads to BA-induced hyperpolarized growth. An analysis of Sod1p and Tps1p expression revealed that BA stress induces superoxide dismutase and increases trehalose synthesis activity, albeit only after a 7 h delay. We conclude that normal BA resistance of depends on the functioning of HOG signalling, the trehalose synthesis pathway and superoxide dismutase activity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.060590-0
2012-10-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/10/2667.html?itemId=/content/journal/micro/10.1099/mic.0.060590-0&mimeType=html&fmt=ahah

References

  1. Aysan E., Sahin F., Telci D., Yalvac M. E., Emre S. H., Karaca C., Muslumanoglu M. ( 2011). Body weight reducing effect of oral boric acid intake. Int J Med Sci 8:653–658 [View Article][PubMed]
    [Google Scholar]
  2. Bandara A., Fraser S., Chambers P. J., Stanley G. A. ( 2009). Trehalose promotes the survival of Saccharomyces cerevisiae during lethal ethanol stress, but does not influence growth under sublethal ethanol stress. FEMS Yeast Res 9:1208–1216 [View Article][PubMed]
    [Google Scholar]
  3. Barranco W. T., Eckhert C. D. ( 2006). Cellular changes in boric acid-treated DU-145 prostate cancer cells. Br J Cancer 94:884–890 [View Article][PubMed]
    [Google Scholar]
  4. Bicknell A. A., Tourtellotte J., Niwa M. ( 2010). Late phase of the endoplasmic reticulum stress response pathway is regulated by Hog1 MAP kinase. J Biol Chem 285:17545–17555 [View Article][PubMed]
    [Google Scholar]
  5. Blevins D. G., Lukaszewski K. M. ( 1994). Proposed physiologic functions of boron in plants pertinent to animal and human metabolism. Environ Health Perspect 102:Suppl. 731–33[PubMed] [CrossRef]
    [Google Scholar]
  6. Bone R., Shenvi A. B., Kettner C. A., Agard D. A. ( 1987). Serine protease mechanism: structure of an inhibitory complex of α-lytic protease and a tightly bound peptide boronic acid. Biochemistry 26:7609–7614 [View Article][PubMed]
    [Google Scholar]
  7. Burke D., Dawson D., Stearns T. ( 2000). Methods in Yeast Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  8. Cabib E., Leloir L. F. ( 1958). The biosynthesis of trehalose phosphate. J Biol Chem 231:259–275[PubMed]
    [Google Scholar]
  9. Calderone R. A., Fonzi W. A. ( 2001). Virulence factors of Candida albicans . Trends Microbiol 9:327–335 [View Article][PubMed]
    [Google Scholar]
  10. De Seta F., Schmidt M., Vu B., Essmann M., Larsen B. ( 2009). Antifungal mechanisms supporting boric acid therapy of Candida vaginitis. J Antimicrob Chemother 63:325–336 [View Article][PubMed]
    [Google Scholar]
  11. Delaunay A., Pflieger D., Barrault M. B., Vinh J., Toledano M. B. ( 2002). A thiol peroxidase is an H2O2 receptor and redox-transducer in gene activation. Cell 111:471–481 [View Article][PubMed]
    [Google Scholar]
  12. Di Renzo F., Cappelletti G., Broccia M. L., Giavini E., Menegola E. ( 2007). Boric acid inhibits embryonic histone deacetylases: a suggested mechanism to explain boric acid-related teratogenicity. Toxicol Appl Pharmacol 220:178–185 [View Article][PubMed]
    [Google Scholar]
  13. Elbein A. D., Pan Y. T., Pastuszak I., Carroll D. ( 2003). New insights on trehalose: a multifunctional molecule. Glycobiology 13:17R–27R [View Article][PubMed]
    [Google Scholar]
  14. Esim N., Tiryaki D., Karadagoglu O., Atici O. ( 2012). Toxic effects of boron on growth and antioxidant system parameters of maize (Zea mays L.) roots. Toxicol Ind Health [View Article][PubMed]
    [Google Scholar]
  15. Ferrigno P., Posas F., Koepp D., Saito H., Silver P. A. ( 1998). Regulated nucleo/cytoplasmic exchange of HOG1 MAPK requires the importin β homologs NMD5 and XPO1. EMBO J 17:5606–5614 [View Article][PubMed]
    [Google Scholar]
  16. Gancedo C., Flores C.-L. ( 2004). The importance of a functional trehalose biosynthetic pathway for the life of yeasts and fungi. FEMS Yeast Res 4:351–359 [View Article][PubMed]
    [Google Scholar]
  17. Gasch A. P. ( 2007). Comparative genomics of the environmental stress response in ascomycete fungi. Yeast 24:961–976 [View Article][PubMed]
    [Google Scholar]
  18. Goldbach H. E., Wimmer M. A. ( 2007). Boron in plants and animals: Is there a role beyond cell-wall structure? . Z Pflanzenernähr Bodenk 170:39–48 [View Article]
    [Google Scholar]
  19. Hao N., Zeng Y., Elston T. C., Dohlman H. G. ( 2008). Control of MAPK specificity by feedback phosphorylation of shared adaptor protein Ste50. J Biol Chem 283:33798–33802 [View Article][PubMed]
    [Google Scholar]
  20. Hohmann S. ( 2002). Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66:300–372 [View Article][PubMed]
    [Google Scholar]
  21. Hounsa C. G., Brandt E. V., Thevelein J. M., Hohmann S., Prior B. A. ( 1998). Role of trehalose in survival of Saccharomyces cerevisiae under osmotic stress. Microbiology 144:671–680 [View Article][PubMed]
    [Google Scholar]
  22. Huh W.-K., Falvo J. V., Gerke L. C., Carroll A. S., Howson R. W., Weissman J. S., O’Shea E. K. ( 2003). Global analysis of protein localization in budding yeast. Nature 425:686–691 [View Article][PubMed]
    [Google Scholar]
  23. Hunt C. D. ( 2012). Dietary boron: progress in establishing essential roles in human physiology. J Trace Elem Med Biol 26:157–160 [View Article][PubMed]
    [Google Scholar]
  24. Iavazzo C., Gkegkes I. D., Zarkada I. M., Falagas M. E. ( 2011). Boric acid for recurrent vulvovaginal candidiasis: the clinical evidence. J Womens Health (Larchmt) 20:1245–1255 [View Article][PubMed]
    [Google Scholar]
  25. Johnson S. L., Smith K. W. ( 1976). The interaction of borate and sulfite with pyridine nucleotides. Biochemistry 15:553–559 [View Article][PubMed]
    [Google Scholar]
  26. Kaya A., Karakaya H. C., Fomenko D. E., Gladyshev V. N., Koc A. ( 2009). Identification of a novel system for boron transport: Atr1 is a main boron exporter in yeast. Mol Cell Biol 29:3665–3674 [View Article][PubMed]
    [Google Scholar]
  27. Kim D. H., Faull K. F., Norris A. J., Eckhert C. D. ( 2004). Borate–nucleotide complex formation depends on charge and phosphorylation state. J Mass Spectrom 39:743–751 [View Article][PubMed]
    [Google Scholar]
  28. Kobayashi M., Matoh T., Azuma J. ( 1996). Two chains of rhamnogalacturonan II are cross-linked by borate–diol ester bonds in higher plant cell walls. Plant Physiol 110:1017–1020[PubMed]
    [Google Scholar]
  29. Longtine M. S., McKenzie A. III, Demarini D. J., Shah N. G., Wach A., Brachat A., Philippsen P., Pringle J. R. ( 1998). Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae . Yeast 14:953–961 [View Article][PubMed]
    [Google Scholar]
  30. López M. C., Baker H. V. ( 2000). Understanding the growth phenotype of the yeast gcr1 mutant in terms of global genomic expression patterns. J Bacteriol 182:4970–4978 [View Article][PubMed]
    [Google Scholar]
  31. Martín H., Rodríguez-Pachón J. M., Ruiz C., Nombela C., Molina M. ( 2000). Regulatory mechanisms for modulation of signaling through the cell integrity Slt2-mediated pathway in Saccharomyces cerevisiae . J Biol Chem 275:1511–1519 [View Article][PubMed]
    [Google Scholar]
  32. Martínez-Pastor M. T., Marchler G., Schüller C., Marchler-Bauer A., Ruis H., Estruch F. ( 1996). The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J 15:2227–2235[PubMed]
    [Google Scholar]
  33. Meers P. D., Chow C. K. ( 1990). Bacteriostatic and bactericidal actions of boric acid against bacteria and fungi commonly found in urine. J Clin Pathol 43:484–487 [View Article][PubMed]
    [Google Scholar]
  34. Mendling W., Brasch J. ( 2012). Guideline vulvovaginal candidosis (2010) of the German Society for Gynecology and Obstetrics, the Working Group for Infections and Infectimmunology in Gynecology and Obstetrics, the German Society of Dermatology, the Board of German Dermatologists and the German Speaking Mycological Society. Mycoses 55:Suppl. 31–13 [View Article][PubMed]
    [Google Scholar]
  35. Nozawa A., Takano J., Kobayashi M., von Wirén N., Fujiwara T. ( 2006). Roles of BOR1, DUR3, and FPS1 in boron transport and tolerance in Saccharomyces cerevisiae . FEMS Microbiol Lett 262:216–222 [View Article][PubMed]
    [Google Scholar]
  36. O’Rourke S. M., Herskowitz I. ( 1998). The Hog1 MAPK prevents cross talk between the HOG and pheromone response MAPK pathways in Saccharomyces cerevisiae . Genes Dev 12:2874–2886 [View Article][PubMed]
    [Google Scholar]
  37. Parrou J. L., François J. ( 1997). A simplified procedure for a rapid and reliable assay of both glycogen and trehalose in whole yeast cells. Anal Biochem 248:186–188 [View Article][PubMed]
    [Google Scholar]
  38. Parrou J. L., Teste M. A., François J. ( 1997). Effects of various types of stress on the metabolism of reserve carbohydrates in Saccharomyces cerevisiae: genetic evidence for a stress-induced recycling of glycogen and trehalose. Microbiology 143:1891–1900 [View Article][PubMed]
    [Google Scholar]
  39. Prutting S. M., Cerveny J. D. ( 1998). Boric acid vaginal suppositories: a brief review. Infect Dis Obstet Gynecol 6:191–194[PubMed] [CrossRef]
    [Google Scholar]
  40. Redondo-Nieto M., Maunoury N., Mergaert P., Kondorosi E., Bonilla I., Bolaños L. ( 2012). Boron and calcium induce major changes in gene expression during legume nodule organogenesis. Does boron have a role in signalling?. New Phytol 195:14–19 [View Article][PubMed]
    [Google Scholar]
  41. Rep M., Reiser V., Gartner U., Thevelein J. M., Hohmann S., Ammerer G., Ruis H. ( 1999). Osmotic stress-induced gene expression in Saccharomyces cerevisiae requires Msn1p and the novel nuclear factor Hot1p. Mol Cell Biol 19:5474–5485[PubMed]
    [Google Scholar]
  42. Schmidt M., Schaumberg J. Z., Steen C. M., Boyer M. P. ( 2010). Boric acid disturbs cell wall synthesis in Saccharomyces cerevisiae . Int J Microbiol 2010:930465[PubMed] [CrossRef]
    [Google Scholar]
  43. Smith K. W., Johnson S. L. ( 1976). Borate inhibition of yeast alcohol dehydrogenase. Biochemistry 15:560–565 [View Article][PubMed]
    [Google Scholar]
  44. Spence D. ( 2007). Candidiasis (vulvovaginal). Clin Evid (Online)0815[PubMed]
    [Google Scholar]
  45. Uluisik I., Kaya A., Unlu E. S., Avsar K., Karakaya H. C., Yalcin T., Koc A. ( 2011a). Genome-wide identification of genes that play a role in boron stress response in yeast. Genomics 97:106–111 [View Article][PubMed]
    [Google Scholar]
  46. Uluisik I., Kaya A., Fomenko D. E., Karakaya H. C., Carlson B. A., Gladyshev V. N., Koc A. ( 2011b). Boron stress activates the general amino acid control mechanism and inhibits protein synthesis. PLoS ONE 6:e27772 [View Article][PubMed]
    [Google Scholar]
  47. Willig H., Curtze A. ( 1952). [Animal experiments in the therapy of obesity with boric acid]. Dtsch Med J 3:483–485[PubMed]
    [Google Scholar]
  48. Winderickx J., de Winde J. H., Crauwels M., Hino A., Hohmann S., Van Dijck P., Thevelein J. M. ( 1996). Regulation of genes encoding subunits of the trehalose synthase complex in Saccharomyces cerevisiae: novel variations of STRE-mediated transcription control?. Mol Gen Genet 252:470–482 [View Article][PubMed]
    [Google Scholar]
  49. Winkler A., Arkind C., Mattison C. P., Burkholder A., Knoche K., Ota I. ( 2002). Heat stress activates the yeast high-osmolarity glycerol mitogen-activated protein kinase pathway, and protein tyrosine phosphatases are essential under heat stress. Eukaryot Cell 1:163–173 [View Article][PubMed]
    [Google Scholar]
  50. Winzeler E. A., Shoemaker D. D., Astromoff A., Liang H., Anderson K., Andre B., Bangham R., Benito R., Boeke J. D. & other authors ( 1999). Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285:901–906 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.060590-0
Loading
/content/journal/micro/10.1099/mic.0.060590-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error