1887

Abstract

Bacterial adaptation to environmental conditions is essential to ensure maximal fitness in the face of several stresses. In this context, two-component systems (TCSs) represent a predominant signal transduction mechanism, allowing an appropriate response to be mounted when a stimulus is sensed. As facultative intracellular pathogens, spp. face various environmental conditions, and an adequate response is required for a successful infection process. Recently, bioinformatic analysis of genomes predicted a set of 15 bona fide TCS pairs, among which some have been previously investigated. In this report, we characterized a new TCS locus called /, for probable proline sensor–regulator. It encodes a hybrid histidine kinase (PrlS) with an unusual Na/solute symporter N-terminal domain and a transcriptional regulator (belonging to the LuxR family) (PrlR). , spp. with a functional PrlR/S system form bacterial aggregates, which seems to be an adaptive response to a hypersaline environment, while a / mutant does not. We identified ionic strength as a possible signal sensed by this TCS. Finally, this work correlates the absence of a functional PrlR/S system with the lack of hypersaline-induced aggregation in particular marine spp.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.060863-0
2012-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/10/2642.html?itemId=/content/journal/micro/10.1099/mic.0.060863-0&mimeType=html&fmt=ahah

References

  1. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. (editors) ( 1991). Current Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  2. Bellefontaine A.-F., Pierreux C. E., Mertens P., Vandenhaute J., Letesson J. J., De Bolle X. ( 2002). Plasticity of a transcriptional regulation network among alpha-proteobacteria is supported by the identification of CtrA targets in Brucella abortus . Mol Microbiol 43:945–960 [View Article][PubMed]
    [Google Scholar]
  3. Buddle M. B. ( 1956). Studies on Brucella ovis (n.sp.), a cause of genital disease of sheep in New Zealand and Australia. J Hyg (Lond) 54:351–364 [View Article][PubMed]
    [Google Scholar]
  4. Buelow D. R., Raivio T. L. ( 2010). Three (and more) component regulatory systems – auxiliary regulators of bacterial histidine kinases. Mol Microbiol 75:547–566 [View Article][PubMed]
    [Google Scholar]
  5. Carmichael L. E., Bruner D. W. ( 1968). Characteristics of a newly-recognized species of Brucella responsible for infectious canine abortions. Cornell Vet 48:579–592[PubMed]
    [Google Scholar]
  6. Carrica M. C., Fernandez I., Martí M. A., Paris G., Goldbaum F. A. ( 2012). The NtrY/X two-component system of Brucella spp. acts as a redox sensor and regulates the expression of nitrogen respiration enzymes. Mol Microbiol 85:39–50 [View Article][PubMed]
    [Google Scholar]
  7. Cloeckaert A., de Wergifosse P., Dubray G., Limet J. N. ( 1990). Identification of seven surface-exposed Brucella outer membrane proteins by use of monoclonal antibodies: immunogold labeling for electron microscopy and enzyme-linked immunosorbent assay. Infect Immun 58:3980–3987[PubMed]
    [Google Scholar]
  8. Delrue R. M., Martinez-Lorenzo M., Lestrate P., Danese I., Bielarz V., Mertens P., De Bolle X., Tibor A., Gorvel J. P., Letesson J. J. ( 2001). Identification of Brucella spp. genes involved in intracellular trafficking. Cell Microbiol 3:487–497 [View Article][PubMed]
    [Google Scholar]
  9. Delrue R. M., Deschamps C., Léonard S., Nijskens C., Danese I., Schaus J. M., Bonnot S., Ferooz J., Tibor A. & other authors ( 2005). A quorum-sensing regulator controls expression of both the type IV secretion system and the flagellar apparatus of Brucella melitensis . Cell Microbiol 7:1151–1161 [View Article][PubMed]
    [Google Scholar]
  10. Denoel P. A., Vo T. K., Weynants V. E., Tibor A., Gilson D., Zygmunt M. S., Limet J. N., Letesson J. J. ( 1997). Identification of the major T-cell antigens present in the Brucella melitensis B115 protein preparation, Brucellergene OCB. J Med Microbiol 46:801–806 [View Article][PubMed]
    [Google Scholar]
  11. Dorrell N., Spencer S., Foulonge V., Guigue-Talet P., O’Callaghan D., Wren B. W. ( 1998). Identification, cloning and initial characterisation of FeuPQ in Brucella suis: a new sub-family of two-component regulatory systems. FEMS Microbiol Lett 162:143–150 [View Article][PubMed]
    [Google Scholar]
  12. Dorrell N., Guigue-Talet P., Spencer S., Foulonge V., O’Callaghan D., Wren B. W. ( 1999). Investigation into the role of the response regulator NtrC in the metabolism and virulence of Brucella suis . Microb Pathog 27:1–11 [View Article][PubMed]
    [Google Scholar]
  13. Dricot A., Rual J. F., Lamesch P., Bertin N., Dupuy D., Hao T., Lambert C., Hallez R., Delroisse J. M. & other authors ( 2004). Generation of the Brucella melitensis ORFeome version 1.1. Genome Res 14:10B2201–2206 [View Article][PubMed]
    [Google Scholar]
  14. Foster G., Osterman B. S., Godfroid J., Jacques I., Cloeckaert A. ( 2007). Brucella ceti sp. nov. and Brucella pinnipedialis sp. nov. for Brucella strains with cetaceans and seals as their preferred hosts. Int J Syst Evol Microbiol 57:2688–2693 [View Article][PubMed]
    [Google Scholar]
  15. Foulongne V., Bourg G., Cazevieille C., Michaux-Charachon S., O’Callaghan D. ( 2000). Identification of Brucella suis genes affecting intracellular survival in an in vitro human macrophage infection model by signature-tagged transposon mutagenesis. Infect Immun 68:1297–1303 [View Article][PubMed]
    [Google Scholar]
  16. Fretin D., Fauconnier A., Köhler S., Halling S., Léonard S., Nijskens C., Ferooz J., Lestrate P., Delrue R. M. & other authors ( 2005). The sheathed flagellum of Brucella melitensis is involved in persistence in a murine model of infection. Cell Microbiol 7:687–698 [View Article][PubMed]
    [Google Scholar]
  17. Galperin M. Y. ( 2010). Diversity of structure and function of response regulator output domains. Curr Opin Microbiol 13:150–159 [View Article][PubMed]
    [Google Scholar]
  18. Godefroid M., Svensson M. V., Cambier P., Uzureau S., Mirabella A., De Bolle X., Van Cutsem P., Widmalm G., Letesson J.-J. ( 2010). Brucella melitensis 16M produces a mannan and other extracellular matrix components typical of a biofilm. FEMS Immunol Med Microbiol 59:364–377[PubMed]
    [Google Scholar]
  19. Gorvel J. P., Moreno E. ( 2002). Brucella intracellular life: from invasion to intracellular replication. Vet Microbiol 90:281–297 [View Article][PubMed]
    [Google Scholar]
  20. Groussaud P., Shankster S. J., Koylass M. S., Whatmore A. M. ( 2007). Molecular typing divides marine mammal strains of Brucella into at least three groups with distinct host preferences. J Med Microbiol 56:1512–1518 [View Article][PubMed]
    [Google Scholar]
  21. Hallez R., Mignolet J., Van Mullem V., Wery M., Vandenhaute J., Letesson J. J., Jacobs-Wagner C., De Bolle X. ( 2007). The asymmetric distribution of the essential histidine kinase PdhS indicates a differentiation event in Brucella abortus . EMBO J 26:1444–1455 [View Article][PubMed]
    [Google Scholar]
  22. Iibuchi R., Hara-Kudo Y., Hasegawa A., Kumagai S. ( 2010). Survival of Salmonella on a polypropylene surface under dry conditions in relation to biofilm-formation capability. J Food Prot 73:1506–1510[PubMed]
    [Google Scholar]
  23. Jacobs C., Domian I. J., Maddock J. R., Shapiro L. ( 1999). Cell cycle-dependent polar localization of an essential bacterial histidine kinase that controls DNA replication and cell division. Cell 97:111–120 [View Article][PubMed]
    [Google Scholar]
  24. Jung H. ( 1998). Topology and function of the Na+/proline transporter of Escherichia coli, a member of the Na+/solute cotransporter family. Biochim Biophys Acta 1365:60–64 [View Article][PubMed]
    [Google Scholar]
  25. Jung H. ( 2001). Towards the molecular mechanism of Na+/solute symport in prokaryotes. Biochim Biophys Acta 1505:131–143 [View Article][PubMed]
    [Google Scholar]
  26. Kang Y., Durfee T., Glasner J. D., Qiu Y., Frisch D., Winterberg K. M., Blattner F. R. ( 2004). Systematic mutagenesis of the Escherichia coli genome. J Bacteriol 186:4921–4930 [View Article][PubMed]
    [Google Scholar]
  27. Karatan E., Watnick P. ( 2009). Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev 73:310–347 [View Article][PubMed]
    [Google Scholar]
  28. Kovach M. E., Phillips R. W., Elzer P. H., Roop R. M. II, Peterson K. M. ( 1994). pBBR1MCS: a broad-host-range cloning vector. Biotechniques 16:800–802[PubMed]
    [Google Scholar]
  29. Krämer R. ( 2010). Bacterial stimulus perception and signal transduction: response to osmotic stress. Chem Rec 10:217–229 [View Article][PubMed]
    [Google Scholar]
  30. Kung C., Martinac B., Sukharev S. ( 2010). Mechanosensitive channels in microbes. Annu Rev Microbiol 64:313–329 [View Article][PubMed]
    [Google Scholar]
  31. Kunte H. J., Crane R. A., Culham D. E., Richmond D., Wood J. M. ( 1999). Protein ProQ influences osmotic activation of compatible solute transporter ProP in Escherichia coli K-12. J Bacteriol 181:1537–1543[PubMed]
    [Google Scholar]
  32. Laub M. T., Biondi E. G., Skerker J. M. ( 2007). Phosphotransfer profiling: systematic mapping of two-component signal transduction pathways and phosphorelays. Methods Enzymol 423:531–548 [View Article][PubMed]
    [Google Scholar]
  33. Lavín J. L., Binnewies T. T., Pisabarro A. G., Ussery D. W., García-Lobo J. M., Oguiza J. A. ( 2010). Differences in two-component signal transduction proteins among the genus Brucella: implications for host preference and pathogenesis. Vet Microbiol 144:478–483 [View Article][PubMed]
    [Google Scholar]
  34. Léonard S., Ferooz J., Haine V., Danese I., Fretin D., Tibor A., de Walque S., De Bolle X., Letesson J. J. ( 2007). FtcR is a new master regulator of the flagellar system of Brucella melitensis 16M with homologs in Rhizobiaceae . J Bacteriol 189:131–141 [View Article][PubMed]
    [Google Scholar]
  35. Lestrate P., Delrue R. M., Danese I., Didembourg C., Taminiau B., Mertens P., De Bolle X., Tibor A., Tang C. M., Letesson J. J. ( 2000). Identification and characterization of in vivo attenuated mutants of Brucella melitensis . Mol Microbiol 38:543–551 [View Article][PubMed]
    [Google Scholar]
  36. Letesson J. J., De Bolle X. ( 2004). Brucella virulence: a matter of control. Brucella Molecular and Cellular Biology113–151 Lopez-Goni I., Moriyon I. Pamplona, Spain: Universidad de Navarra;
    [Google Scholar]
  37. Letesson J. J., Lestrate P., Delrue R. M., Danese I., Bellefontaine F., Fretin D., Taminiau B., Tibor A., Dricot A. & other authors ( 2002). Fun stories about Brucella: the “furtive nasty bug”. Vet Microbiol 90:317–328 [View Article][PubMed]
    [Google Scholar]
  38. Levina N., Tötemeyer S., Stokes N. R., Louis P., Jones M. A., Booth I. R. ( 1999). Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J 18:1730–1737 [View Article][PubMed]
    [Google Scholar]
  39. Mascher T., Helmann J. D., Unden G. ( 2006). Stimulus perception in bacterial signal-transducing histidine kinases. Microbiol Mol Biol Rev 70:910–938 [View Article][PubMed]
    [Google Scholar]
  40. Mignolet J., Van der Henst C., Nicolas C., Deghelt M., Dotreppe D., Letesson J. J., De Bolle X. ( 2010). PdhS, an old-pole-localized histidine kinase, recruits the fumarase FumC in Brucella abortus . J Bacteriol 192:3235–3239 [View Article][PubMed]
    [Google Scholar]
  41. Miller K. J., Wood J. M. ( 1996). Osmoadaptation by rhizosphere bacteria. Annu Rev Microbiol 50:101–136 [View Article][PubMed]
    [Google Scholar]
  42. Mitrophanov A. Y., Groisman E. A. ( 2008). Signal integration in bacterial two-component regulatory systems. Genes Dev 22:2601–2611 [View Article][PubMed]
    [Google Scholar]
  43. Moe P. C., Blount P., Kung C. ( 1998). Functional and structural conservation in the mechanosensitive channel MscL implicates elements crucial for mechanosensation. Mol Microbiol 28:583–592 [View Article][PubMed]
    [Google Scholar]
  44. Moreno E., Moriyon I. ( 2002). Brucella melitensis: a nasty bug with hidden credentials for virulence. Proc Natl Acad Sci U S A 99:1–3 [View Article][PubMed]
    [Google Scholar]
  45. Morgan W. J., Corbel M. J. ( 1976). Recommendations for the description of species and biotypes of the genus Brucella . Dev Biol Stand 31:27–37[PubMed]
    [Google Scholar]
  46. Parkinson J. S. ( 1993). Signal transduction schemes of bacteria. Cell 73:857–871 [View Article][PubMed]
    [Google Scholar]
  47. Perraud A. L., Weiss V., Gross R. ( 1999). Signalling pathways in two-component phosphorelay systems. Trends Microbiol 7:115–120 [View Article][PubMed]
    [Google Scholar]
  48. Pirch T., Landmeier S., Jung H. ( 2003). Transmembrane domain II of the Na+/proline transporter PutP of Escherichia coli forms part of a conformationally flexible, cytoplasmic exposed aqueous cavity within the membrane. J Biol Chem 278:42942–42949 [View Article][PubMed]
    [Google Scholar]
  49. Racher K. I., Voegele R. T., Marshall E. V., Culham D. E., Wood J. M., Jung H., Bacon M., Cairns M. T., Ferguson S. M. & other authors ( 1999). Purification and reconstitution of an osmosensor: transporter ProP of Escherichia coli senses and responds to osmotic shifts. Biochemistry 38:1676–1684 [View Article][PubMed]
    [Google Scholar]
  50. Sangari F., Agüero J. ( 1991). Mutagenesis of Brucella abortus: comparative efficiency of three transposon delivery systems. Microb Pathog 11:443–446 [View Article][PubMed]
    [Google Scholar]
  51. Scholz H. C., Hubalek Z., Sedlácek I., Vergnaud G., Tomaso H., Al Dahouk S., Melzer F., Kämpfer P., Neubauer H. & other authors ( 2008). Brucella microti sp. nov., isolated from the common vole Microtus arvalis . Int J Syst Evol Microbiol 58:375–382 [View Article][PubMed]
    [Google Scholar]
  52. Simon R., Priefer U., Pühler A. ( 1983). A broad host range mobilisation system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Nat Biotechnol 1:784–791 [View Article]
    [Google Scholar]
  53. Sola-Landa A., Pizarro-Cerdá J., Grilló M. J., Moreno E., Moriyón I., Blasco J. M., Gorvel J. P., López-Goñi I. ( 1998). A two-component regulatory system playing a critical role in plant pathogens and endosymbionts is present in Brucella abortus and controls cell invasion and virulence. Mol Microbiol 29:125–138 [View Article][PubMed]
    [Google Scholar]
  54. Stoenner H. G., Lackman D. B. ( 1957). A preliminary report on a Brucella isolated from the desert wood rat, Neotoma lepida Thomas. J Am Vet Med Assoc 130:411–412[PubMed]
    [Google Scholar]
  55. Swartz T. E., Tseng T. S., Frederickson M. A., Paris G., Comerci D. J., Rajashekara G., Kim J. G., Mudgett M. B., Splitter G. A. & other authors ( 2007). Blue-light-activated histidine kinases: two-component sensors in bacteria. Science 317:1090–1093 [View Article][PubMed]
    [Google Scholar]
  56. Uzureau S., Godefroid M., Deschamps C., Lemaire J., De Bolle X., Letesson J. J. ( 2007). Mutations of the quorum sensing-dependent regulator VjbR lead to drastic surface modifications in Brucella melitensis . J Bacteriol 189:6035–6047 [View Article][PubMed]
    [Google Scholar]
  57. Wegener C., Tebbe S., Steinhoff H. J., Jung H. ( 2000). Spin labeling analysis of structure and dynamics of the Na+/proline transporter of Escherichia coli . Biochemistry 39:4831–4837 [View Article][PubMed]
    [Google Scholar]
  58. Wood J. M. ( 2006). Osmosensing by bacteria. Sci STKE 2006:pe43 [View Article][PubMed]
    [Google Scholar]
  59. Wood J. M. ( 2007). Bacterial osmosensing transporters. Methods Enzymol 428:77–107 [View Article][PubMed]
    [Google Scholar]
  60. Wu Q., Pei J., Turse C., Ficht T. A. ( 2006). Mariner mutagenesis of Brucella melitensis reveals genes with previously uncharacterized roles in virulence and survival. BMC Microbiol 6:102 [View Article][PubMed]
    [Google Scholar]
  61. Zhang X., Ren J., Li N., Liu W., Wu Q. ( 2009). Disruption of the BMEI0066 gene attenuates the virulence of Brucella melitensis and decreases its stress tolerance. Int J Biol Sci 5:570–577 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.060863-0
Loading
/content/journal/micro/10.1099/mic.0.060863-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error