1887

Abstract

The role of Anr in oxidative stress resistance was investigated in , a polyhydroxybutyrate-producing Antarctic bacterium. The absence of Anr caused increased sensitivity to hydrogen peroxide under low oxygen tension. This phenomenon was associated with a decrease in the redox ratio, higher oxygen consumption and higher reactive oxygen species production. Physiological responses of the mutant to the oxidized state included an increase in NADP(H) content, catalase activity and exopolysaccharide production. The wild-type strain showed a sharp decrease in the reduced thiol pool when exposed to hydrogen peroxide, not observed in the mutant strain. analysis of the genome sequence of revealed putative Anr binding sites upstream from genes related to oxidative stress. Genes encoding several chaperones and cold shock proteins, a glutathione synthase, a sulfate transporter and a thiol peroxidase were identified as potential targets for Anr regulation. Our results suggest a novel role for Anr in oxidative stress resistance and in redox balance maintenance under conditions of restricted oxygen supply.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.061085-0
2013-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/2/259.html?itemId=/content/journal/micro/10.1099/mic.0.061085-0&mimeType=html&fmt=ahah

References

  1. Aebi H. ( 1984). Catalase in vitro . Methods Enzymol 105:121–126[PubMed]
    [Google Scholar]
  2. Albesa I., Becerra M. C., Battán P. C., Páez P. L. ( 2004). Oxidative stress involved in the antibacterial action of different antibiotics. Biochem Biophys Res Commun 317:605–609[PubMed] [CrossRef]
    [Google Scholar]
  3. Ayub N. D., Pettinari M. J., Ruiz J. A., López N. I. ( 2004). A polyhydroxybutyrate-producing Pseudomonas sp. isolated from Antarctic environments with high stress resistance. Curr Microbiol 49:170–174 [View Article][PubMed]
    [Google Scholar]
  4. Ayub N. D., Tribelli P. M., López N. I. ( 2009). Polyhydroxyalkanoates are essential for maintenance of redox state in the Antarctic bacterium Pseudomonas sp. 14-3 during low temperature adaptation. Extremophiles 13:59–66 [View Article][PubMed]
    [Google Scholar]
  5. Bernofsky C., Swan M. ( 1973). An improved cycling assay for nicotinamide adenine dinucleotide. Anal Biochem 53:452–458 [View Article][PubMed]
    [Google Scholar]
  6. Carmel-Harel O., Storz G. ( 2000). Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annu Rev Microbiol 54:439–461 [View Article][PubMed]
    [Google Scholar]
  7. Cha M. K., Kim W. C., Lim C. J., Kim K., Kim I. H. ( 2004). Escherichia coli periplasmic thiol peroxidase acts as lipid hydroperoxide peroxidase and the principal antioxidative function during anaerobic growth. J Biol Chem 279:8769–8778 [View Article][PubMed]
    [Google Scholar]
  8. Cochran W. L., McFeters G. A., Stewart P. S. ( 2000). Reduced susceptibility of thin Pseudomonas aeruginosa biofilms to hydrogen peroxide and monochloramine. J Appl Microbiol 88:22–30 [View Article][PubMed]
    [Google Scholar]
  9. de Lorenzo V., Herrero M., Jakubzik U., Timmis K. N. ( 1990). Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J Bacteriol 172:6568–6572[PubMed]
    [Google Scholar]
  10. Eschbach M., Schreiber K., Trunk K., Buer J., Jahn D., Schobert M. ( 2004). Long-term anaerobic survival of the opportunistic pathogen Pseudomonas aeruginosa via pyruvate fermentation. J Bacteriol 186:4596–4604[PubMed] [CrossRef]
    [Google Scholar]
  11. Fernández-Piñar R., Ramos J. L., Rodríguez-Herva J. J., Espinosa-Urgel M. ( 2008). A two-component regulatory system integrates redox state and population density sensing in Pseudomonas putida . J Bacteriol 190:7666–7674[PubMed] [CrossRef]
    [Google Scholar]
  12. Fuhrer T., Sauer U. ( 2009). Different biochemical mechanisms ensure network-wide balancing of reducing equivalents in microbial metabolism. J Bacteriol 191:2112–2121 [View Article][PubMed]
    [Google Scholar]
  13. Galimand M., Gamper M., Zimmermann A., Haas D. ( 1991). Positive FNR-like control of anaerobic arginine degradation and nitrate respiration in Pseudomonas aeruginosa . J Bacteriol 173:1598–1606[PubMed]
    [Google Scholar]
  14. Gibon Y., Larher F. ( 1997). Cycling assay for nicotinamide adenine dinucleotides: NaCl precipitation and ethanol solubilization of the reduced tetrazolium. Anal Biochem 251:153–157 [View Article][PubMed]
    [Google Scholar]
  15. Hishinuma S., Yuki M., Fujimura M., Fukumori F. ( 2006). OxyR regulated the expression of two major catalases, KatA and KatB, along with peroxiredoxin, AhpC in Pseudomonas putida . Environ Microbiol 8:2115–2124[PubMed] [CrossRef]
    [Google Scholar]
  16. Horst S. A., Jaeger T., Denkel L. A., Rouf S. F., Rhen M., Bange F. C. ( 2010). Thiol peroxidase protects Salmonella enterica from hydrogen peroxide stress in vitro and facilitates intracellular growth. J Bacteriol 192:2929–2932[PubMed] [CrossRef]
    [Google Scholar]
  17. Huisman G. W., Wonink E., Meima R., Kazemier B., Terpstra P., Witholt B. ( 1991). Metabolism of poly(3-hydroxyalkanoates) (PHAs) by Pseudomonas oleovorans. Identification and sequences of genes and function of the encoded proteins in the synthesis and degradation of PHA. J Biol Chem 266:2191–2198[PubMed]
    [Google Scholar]
  18. Jittawuttipoka T., Buranajitpakorn S., Vattanaviboon P., Mongkolsuk S. ( 2009). The catalase-peroxidase KatG is required for virulence of Xanthomonas campestris pv. campestris in a host plant by providing protection against low levels of H2O2.. J Bacteriol 191:7372–7377 [View Article][PubMed]
    [Google Scholar]
  19. Kadouri D. E., Jurkevitch E., Okon Y., Castro-Sowinski S. ( 2005). Ecological and agricultural significance of bacterial polyhydroxyalkanoates. Crit Rev Microbiol 31:55–67 [View Article][PubMed]
    [Google Scholar]
  20. Kawakami T., Kuroki M., Ishii M., Igarashi Y., Arai H. ( 2010). Differential expression of multiple terminal oxidases for aerobic respiration in Pseudomonas aeruginosa . Environ Microbiol 12:1399–1412[PubMed]
    [Google Scholar]
  21. Kim E. J., Wang W., Deckwer W. D., Zeng A. P. ( 2005). Expression of the quorum-sensing regulatory protein LasR is strongly affected by iron and oxygen concentrations in cultures of Pseudomonas aeruginosa irrespective of cell density. Microbiology 151:1127–1138[PubMed] [CrossRef]
    [Google Scholar]
  22. Lapaglia C., Hartzell P. L. ( 1997). Stress-induced production of biofilm in the hyperthermophile Archaeoglobus fulgidus . Appl Environ Microbiol 63:3158–3163[PubMed]
    [Google Scholar]
  23. Larionov A., Krause A., Miller W. ( 2005). A standard curve based method for relative real time PCR data processing. BMC Bioinformatics 6:62 [View Article][PubMed]
    [Google Scholar]
  24. López N. I., Floccari M. E., Garcia A. F., Steinbüchel A., Méndez B. S. ( 1995). Effect of poly-3-hydroxybutyrate content on the starvation survival of bacteria in natural waters. FEMS Microbiol Ecol 16:95–101 [View Article]
    [Google Scholar]
  25. López N. I., Pettinari M. J., Stackebrandt E., Tribelli P. M., Põtter M., Steinbüchel A., Méndez B. S. ( 2009). Pseudomonas extremaustralis sp. nov., a poly(3-hydroxybutyrate) producer isolated from an Antarctic environment. Curr Microbiol 59:514–519 [View Article][PubMed]
    [Google Scholar]
  26. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. ( 1951). Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275[PubMed]
    [Google Scholar]
  27. Lu J., Yang F., Li Y., Zhang X., Xia B., Jin C. ( 2008). Reversible conformational switch revealed by the redox structures of Bacillus subtilis thiol peroxidase. Biochem Biophys Res Commun 373:414–418[PubMed] [CrossRef]
    [Google Scholar]
  28. Mailloux R. J., Lemire J., Appanna V. D. ( 2011). Metabolic networks to combat oxidative stress in Pseudomonas fluorescens . Antonie van Leeuwenhoek 99:433–442 [View Article][PubMed]
    [Google Scholar]
  29. Martínez-Antonio A., Collado-Vides J. ( 2003). Identifying global regulators in transcriptional regulatory networks in bacteria. Curr Opin Microbiol 6:482–489[PubMed] [CrossRef]
    [Google Scholar]
  30. Mishra S., Imlay J. ( 2012). Why do bacteria use so many enzymes to scavenge hydrogen peroxide?. Arch Biochem Biophys 525:145–160 [View Article][PubMed]
    [Google Scholar]
  31. Nikel P. I., Pettinari M. J., Ramírez M. C., Galvagno M. A., Méndez B. S. ( 2008). Escherichia coli arcA mutants: metabolic profile characterization of microaerobic cultures using glycerol as a carbon source. J Mol Microbiol Biotechnol 15:48–54 [View Article][PubMed]
    [Google Scholar]
  32. O’Callaghan J. F., Reen F. J., Adams C., O’Gara F. ( 2011). Low oxygen induces the type III secretion system in Pseudomonas aeruginosa via modulation of the small RNAs rsmZ and rsmY . Microbiology 157:3417–3428 [View Article][PubMed]
    [Google Scholar]
  33. O’Callaghan J. J., Reen F. J., Adams C., Casey P. G., Gahan C. G., O’Gara F. ( 2012). A novel host-responsive sensor mediates virulence and type III secretion during Pseudomonas aeruginosa–host cell interactions. Microbiology 158:1057–1070 [View Article][PubMed]
    [Google Scholar]
  34. Panmanee W., Gomez F., Witte D., Pancholi V., Britigan B. E., Hassett D. J. ( 2008). The peptidoglycan-associated lipoprotein OprL helps protect a Pseudomonas aeruginosa mutant devoid of the transactivator OxyR from hydrogen peroxide-mediated killing during planktonic and biofilm culture. J Bacteriol 190:3658–3669 [View Article][PubMed]
    [Google Scholar]
  35. Partridge J. D., Sanguinetti G., Dibden D. P., Roberts R. E., Poole R. K., Green J. ( 2007). Transition of Escherichia coli from aerobic to micro-aerobic conditions involves fast and slow reacting regulatory components. J Biol Chem 282:11230–11237 [View Article][PubMed]
    [Google Scholar]
  36. Quelas J. I., López-García S. L., Casabuono A., Althabegoiti M. J., Mongiardini E. J., Pérez-Giménez J., Couto A., Lodeiro A. R. ( 2006). Effects of N-starvation and C-source on Bradyrhizobium japonicum exopolysaccharide production and composition, and bacterial infectivity to soybean roots. Arch Microbiol 186:119–128 [View Article][PubMed]
    [Google Scholar]
  37. Ray A., Williams H. D. ( 1997). The effects of mutation of the anr gene on the aerobic respiratory chain of Pseudomonas aeruginosa . FEMS Microbiol Lett 156:227–232 [View Article][PubMed]
    [Google Scholar]
  38. Romeo T., Gong M., Liu M. Y., Brun-Zinkernagel A. M. ( 1993). Identification and molecular characterization of csrA, a pleiotropic gene from Escherichia coli that affects glycogen biosynthesis, gluconeogenesis, cell size, and surface properties. J Bacteriol 175:4744–4755[PubMed]
    [Google Scholar]
  39. Sabra W., Kim E. J., Zeng A. P. ( 2002). Physiological responses of Pseudomonas aeruginosa PAO1 to oxidative stress in controlled microaerobic and aerobic cultures. Microbiology 148:3195–3202[PubMed]
    [Google Scholar]
  40. Salunkhe P., Töpfer T., Buer J., Tümmler B. ( 2005). Genome-wide transcriptional profiling of the steady-state response of Pseudomonas aeruginosa to hydrogen peroxide. J Bacteriol 187:2565–2572[PubMed] [CrossRef]
    [Google Scholar]
  41. Schreiber K., Krieger R., Benkert B., Eschbach M., Arai H., Schobert M., Jahn D. ( 2007). The anaerobic regulatory network required for Pseudomonas aeruginosa nitrate respiration. J Bacteriol 189:4310–4314[PubMed] [CrossRef]
    [Google Scholar]
  42. Somprasong N., Jittawuttipoka T., Duang-Nkern J., Romsang A., Chaiyen P., Schweizer H. P., Vattanaviboon P., Mongkolsuk S. ( 2012). Pseudomonas aeruginosa thiol peroxidase protects against hydrogen peroxide toxicity and displays atypical patterns of gene regulation. J Bacteriol 194:3904–3912 [View Article][PubMed]
    [Google Scholar]
  43. Sonnleitner E., Gonzalez N., Sorger-Domenigg T., Heeb S., Richter A. S., Backofen R., Williams P., Hüttenhofer A., Haas D., Bläsi U. ( 2011). The small RNA PhrS stimulates synthesis of the Pseudomonas aeruginosa quinolone signal. Mol Microbiol 80:868–885 [View Article][PubMed]
    [Google Scholar]
  44. Thomas M., Nicklee T., Hedley D. W. ( 1995). Differential effects of depleting agents on cytoplasmic and nuclear non-protein sulphydryls: a fluorescence image cytometry study. Br J Cancer 72:45–50 [View Article][PubMed]
    [Google Scholar]
  45. Tolla D. A., Savageau M. A. ( 2010). Regulation of aerobic-to-anaerobic transitions by the FNR cycle in Escherichia coli . J Mol Biol 397:893–905 [View Article][PubMed]
    [Google Scholar]
  46. Trevelyan W. E., Harrison J. S. ( 1956). Studies on yeast metabolism. I. Fractionation and microdetermination of cell carbohydrate. J Biochem 63:23–24
    [Google Scholar]
  47. Tribelli P. M., Méndez B. S., López N. I. ( 2010). Oxygen-sensitive global regulator, Anr, is involved in the biosynthesis of poly(3-hydroxybutyrate) in Pseudomonas extremaustralis . J Mol Microbiol Biotechnol 19:180–188[PubMed] [CrossRef]
    [Google Scholar]
  48. Tribelli P. M., Raiger Iustman L. J., Catone M. V., Di Martino C., Revale S., Méndez B. S., López N. I. ( 2012). Genome sequence of the polyhydroxybutyrate producer Pseudomonas extremaustralis, a highly stress-resistant Antarctic bacterium. J Bacteriol 194:2381–2382 [View Article][PubMed]
    [Google Scholar]
  49. Trunk K., Benkert B., Quäck N., Münch R., Scheer M., Garbe J., Jänsch L., Trost M., Wehland J. & other authors ( 2010). Anaerobic adaptation in Pseudomonas aeruginosa: definition of the Anr and Dnr regulons. Environ Microbiol 12:1719–1733[PubMed] [CrossRef]
    [Google Scholar]
  50. Ugidos A., Morales G., Rial E., Williams H. D., Rojo F. ( 2008). The coordinate regulation of multiple terminal oxidases by the Pseudomonas putida ANR global regulator. Environ Microbiol 10:1690–1702 [View Article][PubMed]
    [Google Scholar]
  51. Wei Q., Le Minh P. N., Dötsch A., Hildebrand F., Panmanee W., Elfarash A., Schulz S., Plaisance S., Charlier D. & other authors ( 2012). Global regulation of gene expression by OxyR in an important human opportunistic pathogen. Nucleic Acids Res 40:4320–4333 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.061085-0
Loading
/content/journal/micro/10.1099/mic.0.061085-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error