1887

Abstract

Aromatic hydrocarbons are among the main constituents of crude oil and represent a major fraction of biogenic hydrocarbons. Anthropogenic influences as well as biological production lead to exposure and accumulation of these toxic chemicals in the water column and sediment of marine environments. The ability to degrade these compounds has been demonstrated for oxygen- and sulphate-respiring marine micro-organisms. However, if and to what extent nitrate-reducing bacteria contribute to the degradation of hydrocarbons in the marine environment and if these organisms are similar to their well-studied freshwater counterparts has not been investigated thoroughly. Here we determine the potential of marine prokaryotes from different sediments of the Atlantic Ocean and Mediterranean Sea to couple nitrate reduction to the oxidation of aromatic hydrocarbons. Nitrate-dependent oxidation of toluene as an electron donor in anoxic enrichment cultures was elucidated by analyses of nitrate, nitrite and dinitrogen gas, accompanied by cell proliferation. The metabolically active members of the enriched communities were identified by RT-PCR of their 16S rRNA genes and subsequently quantified by fluorescence hybridization. In all cases, toluene-grown communities were dominated by members of the , followed in some enrichments by metabolically active alphaproteobacteria as well as members of the . From these enrichments, two novel denitrifying toluene-degrading strains belonging to the were isolated. Two additional toluene-degrading denitrifying strains were isolated from sediments from the Black Sea and the North Sea. These isolates belonged to the and . Serial dilutions series with marine sediments indicated that up to 2.2×10 cells cm were able to degrade hydrocarbons with nitrate as the electron acceptor. These results demonstrated the hitherto unrecognized capacity of alpha- and gammaproteobacteria in marine sediments to oxidize toluene using nitrate.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.061598-0
2012-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/12/2946.html?itemId=/content/journal/micro/10.1099/mic.0.061598-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. ( 1990). Basic local alignment search tool. J Mol Biol 215:403–410[PubMed] [CrossRef]
    [Google Scholar]
  2. Alva V. A., Peyton B. M. ( 2003). Phenol and catechol biodegradation by the haloalkaliphile Halomonas campisalis: influence of pH and salinity. Environ Sci Technol 37:4397–4402 [View Article][PubMed]
    [Google Scholar]
  3. Amann R. I., Binder B. J., Olson R. J., Chisholm S. W., Devereux R., Stahl D. A. ( 1990). Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925[PubMed]
    [Google Scholar]
  4. Austin B., Calomiris J. J., Walker J. D., Colwell R. R. ( 1977). Numerical taxonomy and ecology of petroleum-degrading bacteria. Appl Environ Microbiol 34:60–68[PubMed]
    [Google Scholar]
  5. Bernardet J. F., Nakagawa Y., Holmes B. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes ( 2002). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070 [View Article][PubMed]
    [Google Scholar]
  6. Chakraborty R., O’Connor S. M., Chan E., Coates J. D. ( 2005). Anaerobic degradation of benzene, toluene, ethylbenzene, and xylene compounds by Dechloromonas strain RCB. Appl Environ Microbiol 71:8649–8655 [View Article][PubMed]
    [Google Scholar]
  7. Chen J., Henderson G., Grimm C. C., Lloyd S. W., Laine R. A. ( 1998). Termites fumigate their nests with naphthalene. Nature 392:558–559 [CrossRef]
    [Google Scholar]
  8. Dolfing J., Zeyer J., Binder-Eicher P., Schwarzenbach R. P. ( 1990). Isolation and characterization of a bacterium that mineralizes toluene in the absence of molecular oxygen. Arch Microbiol 154:336–341[PubMed] [CrossRef]
    [Google Scholar]
  9. Ehrenreich P., Behrends A., Harder J., Widdel F. ( 2000). Anaerobic oxidation of alkanes by newly isolated denitrifying bacteria. Arch Microbiol 173:58–64[PubMed] [CrossRef]
    [Google Scholar]
  10. Evans P. J., Mang D. T., Kim K. S., Young L. Y. ( 1991). Anaerobic degradation of toluene by a denitrifying bacterium. Appl Environ Microbiol 57:1139–1145[PubMed]
    [Google Scholar]
  11. Felsenstein J. ( 1981). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [View Article][PubMed]
    [Google Scholar]
  12. Felsenstein J. ( 1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  13. Fischer-Romero C., Tindall B. J., Jüttner F. ( 1996). Tolumonas auensis gen. nov., sp. nov., a toluene-producing bacterium from anoxic sediments of a freshwater lake. Int J Syst Bacteriol 46:183–188 [View Article][PubMed]
    [Google Scholar]
  14. Fries M. R., Zhou J., Chee-Sanford J., Tiedje J. M. ( 1994). Isolation, characterization, and distribution of denitrifying toluene degraders from a variety of habitats. Appl Environ Microbiol 60:2802–2810[PubMed]
    [Google Scholar]
  15. Fuchs B. M., Zubkov M. V., Sahm K., Burkill P. H., Amann R. ( 2000). Changes in community composition during dilution cultures of marine bacterioplankton as assessed by flow cytometric and molecular biological techniques. Environ Microbiol 2:191–201 [View Article][PubMed]
    [Google Scholar]
  16. Fukui M., Suwa Y., Urushigawa Y. ( 1996). High survival efficiency and ribosomal RNA decaying pattern of Desulfobacter latus, a highly specific acetate-utilizing organism, during starvation. FEMS Microbiol Ecol 19:17–25 [View Article]
    [Google Scholar]
  17. Gauthier M. J., Lafay B., Christen R., Fernandez L., Acquaviva M., Bonin P., Bertrand J.-C. ( 1992). Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 42:568–576 [View Article][PubMed]
    [Google Scholar]
  18. Gibson D. T., Subramanian V. ( 1984). Microbial degradation of aromatic hydrocarbons. Microbial Degradation of Aromatic Compounds181–252 Gibson D. T. New York: Marcel Dekker;
    [Google Scholar]
  19. Gieg L. M., Jack T. R., Foght J. M. ( 2011). Biological souring and mitigation in oil reservoirs. Appl Microbiol Biotechnol 92:263–282 [View Article][PubMed]
    [Google Scholar]
  20. Gouy M., Guindon S., Gascuel O. ( 2010). SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224 [View Article][PubMed]
    [Google Scholar]
  21. Heider J., Fuchs G. ( 1997). Anaerobic metabolism of aromatic compounds. Eur J Biochem 243:577–596 [View Article][PubMed]
    [Google Scholar]
  22. Heider J., Spormann A. M., Beller H. R., Widdel F. ( 1998). Anaerobic bacterial metabolism of hydrocarbons. FEMS Microbiol Rev 22:459–473 [CrossRef]
    [Google Scholar]
  23. Herbert R. A. ( 1999). Nitrogen cycling in coastal marine ecosystems. FEMS Microbiol Rev 23:563–590 [View Article][PubMed]
    [Google Scholar]
  24. Hess A., Zarda B., Hahn D., Häner A., Stax D., Höhener P., Zeyer J. ( 1997). In situ analysis of denitrifying toluene- and m-xylene-degrading bacteria in a diesel fuel-contaminated laboratory aquifer column. Appl Environ Microbiol 63:2136–2141[PubMed]
    [Google Scholar]
  25. Hubert C., Nemati M., Jenneman G., Voordouw G. ( 2005). Corrosion risk associated with microbial souring control using nitrate or nitrite. Appl Microbiol Biotechnol 68:272–282 [View Article][PubMed]
    [Google Scholar]
  26. Huu N. B., Denner E. B., Ha D. T., Wanner G., Stan-Lotter H. ( 1999). Marinobacter aquaeolei sp. nov., a halophilic bacterium isolated from a Vietnamese oil-producing well. Int J Syst Bacteriol 49:367–375 [View Article][PubMed]
    [Google Scholar]
  27. Jørgensen B. B. ( 1983). Processes at the sediment–water interface. The Major Biogeochemical Cycles and their Interactions477–509 Bolin B., Cook R. B. New York: Wiley;
    [Google Scholar]
  28. Manz W., Amann R., Ludwig W., Wagner M., Schleifer K.-H. ( 1992). Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: problems ans solutions. Syst Appl Microbiol 15:593–600 [CrossRef]
    [Google Scholar]
  29. Manz W., Amann R., Ludwig W., Vancanneyt M., Schleifer K. H. ( 1996). Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum Cytophaga–Flavobacter–Bacteroides in the natural environment. Microbiology 142:1097–1106[PubMed] [CrossRef]
    [Google Scholar]
  30. Marr I. L., Cresser M. S., Ottendorfer L. J. ( 1988). Umweltanalytik. Eine allgemein Einführung Stuttgart: Thieme Verlag;
    [Google Scholar]
  31. Martínez-Cánovas M. J., Quesada E., Llamas I., Béjar V. ( 2004). Halomonas ventosae sp. nov., a moderately halophilic, denitrifying, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 54:733–737[PubMed] [CrossRef]
    [Google Scholar]
  32. Mesbah M., Premachandran U., Whitman W. B. ( 1989). Precise measurement of G+C content of deoxyribonuleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  33. Muyzer G., Teske A., Wirsen C. O., Jannasch H. W. ( 1995). Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch Microbiol 164:165–172[PubMed] [CrossRef]
    [Google Scholar]
  34. Narasingarao P., Häggblom M. M. ( 2006). Sedimenticola selenatireducens, gen. nov., sp. nov., an anaerobic selenate-respiring bacterium isolated from estuarine sediment. Syst Appl Microbiol 29:382–388 [View Article][PubMed]
    [Google Scholar]
  35. Neef A. ( 1997). Anwendung der in situ-Einzelzell-Identifizierung von Bakterien zur Populationsanalyse in Komplexen mikrobiellen Biozönosen München: Technische Universität, München;
    [Google Scholar]
  36. Oelmüller U., Krüger N., Steinbüchel A., Freidrich G. C. ( 1990). Isolation of prokaryotic RNA and detection of specific mRNA with biotinylated probes. J Microbiol Methods 11:73–81 [CrossRef]
    [Google Scholar]
  37. Rabus R., Widdel F. ( 1995a). Anaerobic degradation of ethylbenzene and other aromatic hydrocarbons by new denitrifying bacteria. Arch Microbiol 163:96–103 [View Article][PubMed]
    [Google Scholar]
  38. Rabus R., Widdel F. ( 1995b). Anaerobic degradation of ethylbenzene and other aromatic hydrocarbons by new denitrifying bacteria. Arch Microbiol 163:96–103 [View Article][PubMed]
    [Google Scholar]
  39. Rabus R., Wilkes H., Schramm A., Harms G., Behrends A., Amann R., Widdel F. ( 1999). Anaerobic utilisation of alkylbenzenes and n-alkanes from crude oil in an enrichment culture of denitrifying bacteria affiliated with β-subclass of Proteobacteria . Environ Microbiol 1:145–157[PubMed] [CrossRef]
    [Google Scholar]
  40. Rosselló-Mora R., Amann R. ( 2001). The species concept for prokaryotes. FEMS Microbiol Rev 25:39–67 [View Article][PubMed]
    [Google Scholar]
  41. Saitou N., Nei M. ( 1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  42. Sánchez-Porro C., Kaur B., Mann H., Ventosa A. ( 2010). Halomonas titanicae sp. nov., a halophilic bacterium isolated from the RMS Titanic . Int J Syst Evol Microbiol 60:2768–2774[PubMed] [CrossRef]
    [Google Scholar]
  43. Snaidr J., Amann R., Huber I., Ludwig W., Schleifer K.-H. ( 1997). Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl Environ Microbiol 63:2884–2896[PubMed]
    [Google Scholar]
  44. Spormann A. M., Widdel F. ( 2000). Metabolism of alkylbenzenes, alkanes, and other hydrocarbons in anaerobic bacteria. Biodegradation 11:85–105 [View Article][PubMed]
    [Google Scholar]
  45. Teramoto M., Suzuki M., Okazaki F., Hatmanti A., Harayama S. ( 2009). Oceanobacter-related bacteria are important for the degradation of petroleum aliphatic hydrocarbons in the tropical marine environment. Microbiology 155:3362–3370 [View Article][PubMed]
    [Google Scholar]
  46. Tissot B. P., Welte D. H. ( 1984). Petroleum alteration. Petroleum Formation and Occurrence459–469 Tissot B. P., Welte D. H. New York: Springer;
    [Google Scholar]
  47. Ventosa A., Nieto J. J., Oren A. ( 1998). Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544[PubMed]
    [Google Scholar]
  48. Wallner G., Amann R., Beisker W. ( 1993). Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry 14:136–143 [View Article][PubMed]
    [Google Scholar]
  49. Weelink S. A., van Doesburg W., Saia F. T., Rijpstra W. I., Röling W. F., Smidt H., Stams A. J. ( 2009). A strictly anaerobic betaproteobacterium Georgfuchsia toluolica gen. nov., sp. nov. degrades aromatic compounds with Fe(III), Mn(IV) or nitrate as an electron acceptor. FEMS Microbiol Ecol 70:575–585 [View Article][PubMed]
    [Google Scholar]
  50. Widdel F., Bak F. ( 1992). Gram-negative mesophilic sulfate-reducing bacteria. The Prokaryotes3352–3392 Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. Berlin: Springer; [CrossRef]
    [Google Scholar]
  51. Widdel F., Boetius A., Rabus R. ( 2004). Anaerobic degradation of hydrocarbons including methane. The Prokaryotes: a Handbook on the Biology of Bacteria, 3rd edn.1028–1049 Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrand E. New York: Springer;
    [Google Scholar]
  52. Widdel F., Knittel K., Galushko A. ( 2010). Anaerobic hydrocarbon-degrading microorganisms: an overview. Handbook of Hydrocarbon and Lipid Microbiology1997–2021 Timmis K. N. Berlin: Springer; [CrossRef]
    [Google Scholar]
  53. Zedelius J., Rabus R., Grundmann O., Werner I., Brodkorb D., Schreiber F., Ehrenreich P., Behrends A., Wilkes H. & other authors ( 2011). Alkane degradation under anoxic conditions by a nitrate-reducing bacterium with possible involvement of the electron acceptor in substrate activation. Environ Microbiol Rep 3:125–135[PubMed] [CrossRef]
    [Google Scholar]
  54. Zengler K., Richnow H. H., Rosselló-Mora R., Michaelis W., Widdel F. ( 1999). Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401:266–269[PubMed] [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.061598-0
Loading
/content/journal/micro/10.1099/mic.0.061598-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error