1887

Abstract

The Gram-negative bacterium pv. () is the causal agent of speck disease in tomato. pathogenicity depends on a type III secretion system that delivers effector proteins into host cells, where they promote disease by manipulating processes to the advantage of the pathogen. Previous studies identified seven effectors that inhibit growth when expressed in yeast under normal growth conditions, suggesting that they interfere with cellular processes conserved in yeast and plants. We hypothesized that effectors also target conserved cellular processes that are required for yeast growth only under stress conditions. We therefore examined phenotypes induced by expression of effectors in yeast grown in the presence of various stressors. Out of 29 effectors tested, five (HopX1, HopG1, HopT1-1, HopH1 and AvrPtoB) displayed growth inhibition phenotypes only in combination with stress conditions. Viability assays revealed that the HopX1 effector caused loss of cell viability under prolonged osmotic stress. Using transcription reporters, we found that HopX1 attenuated the activation of the high osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) pathway, which is responsible for yeast survival under osmotic stress, while other MAPK pathways were mildly affected by HopX1. Interestingly, HopX1-mediated phenotypes in yeast were dependent on the putative transglutaminase catalytic triad of the effector. This study enlarges the pool of phenotypes available for the functional analysis of type III effectors in yeast, and exemplifies how analysis of phenotypes detected in yeast under stress conditions can lead to the identification of eukaryotic cellular processes affected by bacterial effectors.

Funding
This study was supported by the:
  • Israel Science Foundation
  • ISF (Award 326/10)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.062513-0
2012-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/11/2859.html?itemId=/content/journal/micro/10.1099/mic.0.062513-0&mimeType=html&fmt=ahah

References

  1. Asai T., Tena G., Plotnikova J., Willmann M. R., Chiu W. L., Gomez-Gomez L., Boller T., Ausubel F. M., Sheen J. ( 2002). MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977–983 [PubMed] [CrossRef]
    [Google Scholar]
  2. Auesukaree C., Damnernsawad A., Kruatrachue M., Pokethitiyook P., Boonchird C., Kaneko Y., Harashima S. ( 2009). Genome-wide identification of genes involved in tolerance to various environmental stresses in Saccharomyces cerevisiae . J Appl Genet 50:301–310 [PubMed] [CrossRef]
    [Google Scholar]
  3. Block A., Alfano J. R. ( 2011). Plant targets for Pseudomonas syringae type III effectors: virulence targets or guarded decoys?. Curr Opin Microbiol 14:39–46 [PubMed] [CrossRef]
    [Google Scholar]
  4. Block A., Guo M., Li G., Elowsky C., Clemente T. E., Alfano J. R. ( 2010). The Pseudomonas syringae type III effector HopG1 targets mitochondria, alters plant development and suppresses plant innate immunity. Cell Microbiol 12:318–330 [PubMed] [CrossRef]
    [Google Scholar]
  5. Bosis E., Salomon D., Sessa G. ( 2011). A simple yeast-based strategy to identify host cellular processes targeted by bacterial effector proteins. PLoS ONE 6:e27698 [PubMed] [CrossRef]
    [Google Scholar]
  6. Buell C. R., Joardar V., Lindeberg M., Selengut J., Paulsen I. T., Gwinn M. L., Dodson R. J., Deboy R. T., Durkin A. S. & other authors ( 2003). The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proc Natl Acad Sci U S A 100:10181–10186 [PubMed] [CrossRef]
    [Google Scholar]
  7. Cox J. S., Walter P. ( 1996). A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response. Cell 87:391–404 [PubMed] [CrossRef]
    [Google Scholar]
  8. Cunnac S., Lindeberg M., Collmer A. ( 2009). Pseudomonas syringae type III secretion system effectors: repertoires in search of functions. Curr Opin Microbiol 12:53–60 [PubMed] [CrossRef]
    [Google Scholar]
  9. Cunnac S., Chakravarthy S., Kvitko B. H., Russell A. B., Martin G. B., Collmer A. ( 2011). Genetic disassembly and combinatorial reassembly identify a minimal functional repertoire of type III effectors in Pseudomonas syringae . Proc Natl Acad Sci U S A 108:2975–2980 [PubMed] [CrossRef]
    [Google Scholar]
  10. Curak J., Rohde J., Stagljar I. ( 2009). Yeast as a tool to study bacterial effectors. Curr Opin Microbiol 12:18–23 [PubMed] [CrossRef]
    [Google Scholar]
  11. del Pozo O., Pedley K. F., Martin G. B. ( 2004). MAPKKKα is a positive regulator of cell death associated with both plant immunity and disease. EMBO J 23:3072–3082 [PubMed] [CrossRef]
    [Google Scholar]
  12. Feng F., Zhou J. M. ( 2012). Plant–bacterial pathogen interactions mediated by type III effectors. Curr Opin Plant Biol 15:469–476 [PubMed] [CrossRef]
    [Google Scholar]
  13. Ferrigno P., Posas F., Koepp D., Saito H., Silver P. A. ( 1998). Regulated nucleo/cytoplasmic exchange of HOG1 MAPK requires the importin beta homologs NMD5 and XPO1. EMBO J 17:5606–5614 [PubMed] [CrossRef]
    [Google Scholar]
  14. Fu Z. Q., Guo M., Jeong B. R., Tian F., Elthon T. E., Cerny R. L., Staiger D., Alfano J. R. ( 2007). A type III effector ADP-ribosylates RNA-binding proteins and quells plant immunity. Nature 447:284–288 [PubMed] [CrossRef]
    [Google Scholar]
  15. García R., Rodríguez-Peña J. M., Bermejo C., Nombela C., Arroyo J. ( 2009). The high osmotic response and cell wall integrity pathways cooperate to regulate transcriptional responses to zymolyase-induced cell wall stress in Saccharomyces cerevisiae . J Biol Chem 284:10901–10911 [PubMed] [CrossRef]
    [Google Scholar]
  16. Gimenez-Ibanez S., Hann D. R., Ntoukakis V., Petutschnig E., Lipka V., Rathjen J. P. ( 2009). AvrPtoB targets the LysM receptor kinase CERK1 to promote bacterial virulence on plants. Curr Biol 19:423–429 [PubMed] [CrossRef]
    [Google Scholar]
  17. Göhre V., Spallek T., Häweker H., Mersmann S., Mentzel T., Boller T., de Torres M., Mansfield J. W., Robatzek S. ( 2008). Plant pattern-recognition receptor FLS2 is directed for degradation by the bacterial ubiquitin ligase AvrPtoB. Curr Biol 18:1824–1832 [PubMed] [CrossRef]
    [Google Scholar]
  18. Gustin M. C., Albertyn J., Alexander M., Davenport K. ( 1998). MAP kinase pathways in the yeast Saccharomyces cerevisiae . Microbiol Mol Biol Rev 62:1264–1300 [PubMed]
    [Google Scholar]
  19. Ham J. H., Majerczak D., Ewert S., Sreerekha M. V., Mackey D., Coplin D. ( 2008). WtsE, an AvrE-family type III effector protein of Pantoea stewartii subsp. stewartii, causes cell death in non-host plants. Mol Plant Pathol 9:633–643 [PubMed] [CrossRef]
    [Google Scholar]
  20. Hersen P., McClean M. N., Mahadevan L., Ramanathan S. ( 2008). Signal processing by the HOG MAP kinase pathway. Proc Natl Acad Sci U S A 105:7165–7170 [PubMed] [CrossRef]
    [Google Scholar]
  21. Hoffman G. A., Garrison T. R., Dohlman H. G. ( 2002). Analysis of RGS proteins in Saccharomyces cerevisiae . Methods Enzymol 344:617–631 [PubMed]
    [Google Scholar]
  22. Hohmann S. ( 2002). Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66:300–372 [PubMed] [CrossRef]
    [Google Scholar]
  23. Howson R., Huh W. K., Ghaemmaghami S., Falvo J. V., Bower K., Belle A., Dephoure N., Wykoff D. D., Weissman J. S., O’Shea E. K. ( 2005). Construction, verification and experimental use of two epitope-tagged collections of budding yeast strains. Comp Funct Genomics 6:2–16 [PubMed] [CrossRef]
    [Google Scholar]
  24. Jelenska J., Yao N., Vinatzer B. A., Wright C. M., Brodsky J. L., Greenberg J. T. ( 2007). A J domain virulence effector of Pseudomonas syringae remodels host chloroplasts and suppresses defenses. Curr Biol 17:499–508 [PubMed] [CrossRef]
    [Google Scholar]
  25. Jung U. S., Sobering A. K., Romeo M. J., Levin D. E. ( 2002). Regulation of the yeast Rlm1 transcription factor by the Mpk1 cell wall integrity MAP kinase. Mol Microbiol 46:781–789 [PubMed] [CrossRef]
    [Google Scholar]
  26. Kippert F. ( 1995). A rapid permeabilization procedure for accurate quantitative determination of β-galactosidase activity in yeast cells. FEMS Microbiol Lett 128:201–206 [PubMed]
    [Google Scholar]
  27. Kuranda K., Leberre V., Sokol S., Palamarczyk G., François J. ( 2006). Investigating the caffeine effects in the yeast Saccharomyces cerevisiae brings new insights into the connection between TOR, PKC and Ras/cAMP signalling pathways. Mol Microbiol 61:1147–1166 [PubMed] [CrossRef]
    [Google Scholar]
  28. Kvitko B. H., Park D. H., Velásquez A. C., Wei C. F., Russell A. B., Martin G. B., Schneider D. J., Collmer A. ( 2009). Deletions in the repertoire of Pseudomonas syringae pv. tomato DC3000 type III secretion effector genes reveal functional overlap among effectors. PLoS Pathog 5:e1000388 [PubMed] [CrossRef]
    [Google Scholar]
  29. Maayan I., Engelberg D. ( 2009). The yeast MAPK Hog1 is not essential for immediate survival under osmostress. FEBS Lett 583:2015–2020 [PubMed] [CrossRef]
    [Google Scholar]
  30. Martin G. B., Bogdanove A. J., Sessa G. ( 2003). Understanding the functions of plant disease resistance proteins. Annu Rev Plant Biol 54:23–61 [PubMed] [CrossRef]
    [Google Scholar]
  31. Melech-Bonfil S., Sessa G. ( 2010). Tomato MAPKKKϵ is a positive regulator of cell-death signaling networks associated with plant immunity. Plant J 64:379–391 [PubMed] [CrossRef]
    [Google Scholar]
  32. Munkvold K. R., Martin M. E., Bronstein P. A., Collmer A. ( 2008). A survey of the Pseudomonas syringae pv. tomato DC3000 type III secretion system effector repertoire reveals several effectors that are deleterious when expressed in Saccharomyces cerevisiae . Mol Plant Microbe Interact 21:490–502 [PubMed] [CrossRef]
    [Google Scholar]
  33. Mur L. A., Kenton P., Lloyd A. J., Ougham H., Prats E. ( 2008). The hypersensitive response; the centenary is upon us but how much do we know?. J Exp Bot 59:501–520 [PubMed] [CrossRef]
    [Google Scholar]
  34. Nachman I., Regev A., Ramanathan S. ( 2007). Dissecting timing variability in yeast meiosis. Cell 131:544–556 [PubMed] [CrossRef]
    [Google Scholar]
  35. Nimchuk Z. L., Fisher E. J., Desveaux D., Chang J. H., Dangl J. L. ( 2007). The HopX (AvrPphE) family of Pseudomonas syringae type III effectors require a catalytic triad and a novel N-terminal domain for function. Mol Plant Microbe Interact 20:346–357 [PubMed] [CrossRef]
    [Google Scholar]
  36. Nomura K., Debroy S., Lee Y. H., Pumplin N., Jones J., He S. Y. ( 2006). A bacterial virulence protein suppresses host innate immunity to cause plant disease. Science 313:220–223 [PubMed] [CrossRef]
    [Google Scholar]
  37. Ntoukakis V., Mucyn T. S., Gimenez-Ibanez S., Chapman H. C., Gutierrez J. R., Balmuth A. L., Jones A. M., Rathjen J. P. ( 2009). Host inhibition of a bacterial virulence effector triggers immunity to infection. Science 324:784–787 [PubMed] [CrossRef]
    [Google Scholar]
  38. Parsons A. B., Brost R. L., Ding H., Li Z., Zhang C., Sheikh B., Brown G. W., Kane P. M., Hughes T. R., Boone C. ( 2004). Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways. Nat Biotechnol 22:62–69 [PubMed] [CrossRef]
    [Google Scholar]
  39. Patterson J. C., Klimenko E. S., Thorner J. ( 2010). Single-cell analysis reveals that insulation maintains signaling specificity between two yeast MAPK pathways with common components. Sci Signal 3:ra75 [PubMed]
    [Google Scholar]
  40. Preston G. M. ( 2000). Pseudomonas syringae pv. tomato: the right pathogen, of the right plant, at the right time. Mol Plant Pathol 1:263–275 [PubMed] [CrossRef]
    [Google Scholar]
  41. Rodriguez M. C., Petersen M., Mundy J. ( 2010). Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol 61:621–649 [PubMed] [CrossRef]
    [Google Scholar]
  42. Rodríguez-Herva J. J., González-Melendi P., Cuartas-Lanza R., Antúnez-Lamas M., Río-Alvarez I., Li Z., López-Torrejón G., Díaz I., Del Pozo J. C. & other authors ( 2012). A bacterial cysteine protease effector protein interferes with photosynthesis to suppress plant innate immune responses. Cell Microbiol 14:669–681 [PubMed] [CrossRef]
    [Google Scholar]
  43. Rodríguez-Peña J. M., García R., Nombela C., Arroyo J. ( 2010). The high-osmolarity glycerol (HOG) and cell wall integrity (CWI) signalling pathways interplay: a yeast dialogue between MAPK routes. Yeast 27:495–502 [PubMed] [CrossRef]
    [Google Scholar]
  44. Rosebrock T. R., Zeng L., Brady J. J., Abramovitch R. B., Xiao F., Martin G. B. ( 2007). A bacterial E3 ubiquitin ligase targets a host protein kinase to disrupt plant immunity. Nature 448:370–374 [PubMed] [CrossRef]
    [Google Scholar]
  45. Salomon D., Sessa G. ( 2010). Identification of growth inhibition phenotypes induced by expression of bacterial type III effectors in yeast. J Vis Exp37 [View Article] [PubMed]
    [Google Scholar]
  46. Salomon D., Dar D., Sreeramulu S., Sessa G. ( 2011). Expression of Xanthomonas campestris pv. vesicatoria type III effectors in yeast affects cell growth and viability. Mol Plant Microbe Interact 24:305–314 [PubMed] [CrossRef]
    [Google Scholar]
  47. Schacherer J., Ruderfer D. M., Gresham D., Dolinski K., Botstein D., Kruglyak L. ( 2007). Genome-wide analysis of nucleotide-level variation in commonly used Saccharomyces cerevisiae strains. PLoS ONE 2:e322 [PubMed] [CrossRef]
    [Google Scholar]
  48. Shan L., He P., Sheen J. ( 2007). Intercepting host MAPK signaling cascades by bacterial type III effectors. Cell Host Microbe 1:167–174 [PubMed] [CrossRef]
    [Google Scholar]
  49. Siggers K. A., Lesser C. F. ( 2008). The yeast Saccharomyces cerevisiae: a versatile model system for the identification and characterization of bacterial virulence proteins. Cell Host Microbe 4:8–15 [PubMed] [CrossRef]
    [Google Scholar]
  50. Slagowski N. L., Kramer R. W., Morrison M. F., LaBaer J., Lesser C. F. ( 2008). A functional genomic yeast screen to identify pathogenic bacterial proteins. PLoS Pathog 4:e9 [PubMed] [CrossRef]
    [Google Scholar]
  51. Tatebayashi K., Yamamoto K., Tanaka K., Tomida T., Maruoka T., Kasukawa E., Saito H. ( 2006). Adaptor functions of Cdc42, Ste50, and Sho1 in the yeast osmoregulatory HOG MAPK pathway. EMBO J 25:3033–3044 [PubMed] [CrossRef]
    [Google Scholar]
  52. Tatebayashi K., Tanaka K., Yang H. Y., Yamamoto K., Matsushita Y., Tomida T., Imai M., Saito H. ( 2007). Transmembrane mucins Hkr1 and Msb2 are putative osmosensors in the SHO1 branch of yeast HOG pathway. EMBO J 26:3521–3533 [PubMed] [CrossRef]
    [Google Scholar]
  53. Tena G., Boudsocq M., Sheen J. ( 2011). Protein kinase signaling networks in plant innate immunity. Curr Opin Plant Biol 14:519–529 [PubMed] [CrossRef]
    [Google Scholar]
  54. Valdivia R. H. ( 2004). Modeling the function of bacterial virulence factors in Saccharomyces cerevisiae . Eukaryot Cell 3:827–834 [PubMed] [CrossRef]
    [Google Scholar]
  55. Wang Y., Li J., Hou S., Wang X., Li Y., Ren D., Chen S., Tang X., Zhou J. M. ( 2010). A Pseudomonas syringae ADP-ribosyltransferase inhibits Arabidopsis mitogen-activated protein kinase kinases. Plant Cell 22:2033–2044 [PubMed] [CrossRef]
    [Google Scholar]
  56. Wilton M., Subramaniam R., Elmore J., Felsensteiner C., Coaker G., Desveaux D. ( 2010). The type III effector HopF2Pto targets Arabidopsis RIN4 protein to promote Pseudomonas syringae virulence. Proc Natl Acad Sci U S A 107:2349–2354 [PubMed] [CrossRef]
    [Google Scholar]
  57. Xiang T., Zong N., Zou Y., Wu Y., Zhang J., Xing W., Li Y., Tang X., Zhu L. & other authors ( 2008). Pseudomonas syringae effector AvrPto blocks innate immunity by targeting receptor kinases. Curr Biol 18:74–80 [PubMed] [CrossRef]
    [Google Scholar]
  58. Yoon S., Liu Z., Eyobo Y., Orth K. ( 2003). Yersinia effector YopJ inhibits yeast MAPK signaling pathways by an evolutionarily conserved mechanism. J Biol Chem 278:2131–2135 [PubMed] [CrossRef]
    [Google Scholar]
  59. Zeng L., Velásquez A. C., Munkvold K. R., Zhang J., Martin G. B. ( 2012). A tomato LysM receptor-like kinase promotes immunity and its kinase activity is inhibited by AvrPtoB. Plant J 69:92–103 [PubMed] [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.062513-0
Loading
/content/journal/micro/10.1099/mic.0.062513-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error