1887

Abstract

The yeast vacuole is functionally analogous to the mammalian lysosome. Both play important roles in fundamental cellular processes such as protein degradation, detoxification, osmoregulation, autophagy and apoptosis which, when deregulated in humans, can lead to several diseases. Some of these vacuolar roles are difficult to study in a cellular context, and therefore the use of a cell-free system is an important approach to gain further insight into the different molecular mechanisms required for vacuolar function. In the present study, the potentialities of flow cytometry for the structural and functional characterization of isolated yeast vacuoles were explored. The isolation protocol resulted in a yeast vacuolar fraction with a degree of purity suitable for cytometric analysis. Moreover, isolated vacuoles were structurally and functionally intact and able to generate and maintain electrochemical gradients of ions across the vacuolar membrane, as assessed by flow cytometry. Proton and calcium gradients were dissipated by NHCl and calcimycin, respectively. These results established flow cytometry as a powerful technique for the characterization of isolated vacuoles. The protocols developed in this study can also be used to enhance our understanding of several molecular mechanisms underlying the development of lysosome-related diseases, as well as provide tools to screen for new drugs that can modulate these processes, which have promising clinical relevance.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.062570-0
2013-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/5/848.html?itemId=/content/journal/micro/10.1099/mic.0.062570-0&mimeType=html&fmt=ahah

References

  1. Arata Y., Nishi T., Kawasaki-Nishi S., Shao E., Wilkens S., Forgac M. ( 2002). Structure, subunit function and regulation of the coated vesicle and yeast vacuolar (H+)-ATPases. Biochim Biophys Acta 1555:71–74 [View Article][PubMed]
    [Google Scholar]
  2. Brett C. L., Tukaye D. N., Mukherjee S., Rao R. ( 2005). The yeast endosomal Na+(K+)/H+ exchanger Nhx1 regulates cellular pH to control vesicle trafficking. Mol Biol Cell 16:1396–1405 [View Article][PubMed]
    [Google Scholar]
  3. Brett C. L., Kallay L., Hua Z., Green R., Chyou A., Zhang Y., Graham T. R., Donowitz M., Rao R. ( 2011). Genome-wide analysis reveals the vacuolar pH-stat of Saccharomyces cerevisiae . PLoS ONE 6:e17619 [View Article][PubMed]
    [Google Scholar]
  4. Cochilla A. J., Angleson J. K., Betz W. J. ( 1999). Monitoring secretory membrane with FM1-43 fluorescence. Annu Rev Neurosci 22:1–10 [View Article][PubMed]
    [Google Scholar]
  5. Cohen A., Perzov N., Nelson H., Nelson N. ( 1999). A novel family of yeast chaperons involved in the distribution of V-ATPase and other membrane proteins. J Biol Chem 274:26885–26893 [View Article][PubMed]
    [Google Scholar]
  6. Cools A. A., Janssen L. H. ( 1986). Fluorescence response of acridine orange to changes in pH gradients across liposome membranes. Experientia 42:954–956 [View Article][PubMed]
    [Google Scholar]
  7. Cunningham K. W., Fink G. R. ( 1996). Calcineurin inhibits VCX1-dependent H+/Ca2+ exchange and induces Ca2+ ATPases in Saccharomyces cerevisiae . Mol Cell Biol 16:2226–2237[PubMed]
    [Google Scholar]
  8. Eitzen G., Wang L., Thorngren N., Wickner W. ( 2002). Remodeling of organelle-bound actin is required for yeast vacuole fusion. J Cell Biol 158:669–679 [View Article][PubMed]
    [Google Scholar]
  9. Forster C., Kane P. M. ( 2000). Cytosolic Ca2+ homeostasis is a constitutive function of the V-ATPase in Saccharomyces cerevisiae . J Biol Chem 275:38245–38253 [View Article][PubMed]
    [Google Scholar]
  10. Gietz R. D., Woods R. A. ( 2006). Yeast transformation by the LiAc/SS Carrier DNA/PEG method. Methods Mol Biol 313:107–120[PubMed]
    [Google Scholar]
  11. Graham L. A., Flannery A. R., Stevens T. H. ( 2003). Structure and assembly of the yeast V-ATPase. J Bioenerg Biomembr 35:301–312 [View Article][PubMed]
    [Google Scholar]
  12. Guicciardi M. E., Leist M., Gores G. J. ( 2004). Lysosomes in cell death. Oncogene 23:2881–2890 [View Article][PubMed]
    [Google Scholar]
  13. Kane P. M. ( 2006). The where, when, and how of organelle acidification by the yeast vacuolar H+-ATPase. Microbiol Mol Biol Rev 70:177–191 [View Article][PubMed]
    [Google Scholar]
  14. Klionsky D. J., Herman P. K., Emr S. D. ( 1990). The fungal vacuole: composition, function, and biogenesis. Microbiol Rev 54:266–292[PubMed]
    [Google Scholar]
  15. Li S. C., Kane P. M. ( 2009). The yeast lysosome-like vacuole: endpoint and crossroads. Biochim Biophys Acta 1793:650–663 [View Article][PubMed]
    [Google Scholar]
  16. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. ( 1951). Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275[PubMed]
    [Google Scholar]
  17. Mason D. A., Shulga N., Undavai S., Ferrando-May E., Rexach M. F., Goldfarb D. S. ( 2005). Increased nuclear envelope permeability and Pep4p-dependent degradation of nucleoporins during hydrogen peroxide-induced cell death. FEMS Yeast Res 5:1237–1251 [View Article][PubMed]
    [Google Scholar]
  18. Michaillat L., Baars T. L., Mayer A. ( 2012). Cell-free reconstitution of vacuole membrane fragmentation reveals regulation of vacuole size and number by TORC1. Mol Biol Cell 23:881–895 [View Article][PubMed]
    [Google Scholar]
  19. Miseta A., Kellermayer R., Aiello D. P., Fu L., Bedwell D. M. ( 1999). The vacuolar Ca2+/H+ exchanger Vcx1p/Hum1p tightly controls cytosolic Ca2+ levels in S. cerevisiae . FEBS Lett 451:132–136 [View Article][PubMed]
    [Google Scholar]
  20. Pereira C., Chaves S., Alves S., Salin B., Camougrand N., Manon S., Sousa M. J., Côrte-Real M. ( 2010). Mitochondrial degradation in acetic acid-induced yeast apoptosis: the role of Pep4 and the ADP/ATP carrier. Mol Microbiol 76:1398–1410 [View Article][PubMed]
    [Google Scholar]
  21. Plant P. J., Manolson M. F., Grinstein S., Demaurex N. ( 1999). Alternative mechanisms of vacuolar acidification in H+-ATPase-deficient yeast. J Biol Chem 274:37270–37279 [View Article][PubMed]
    [Google Scholar]
  22. Premsler T., Zahedi R. P., Lewandrowski U., Sickmann A. ( 2009). Recent advances in yeast organelle and membrane proteomics. Proteomics 9:4731–4743 [View Article][PubMed]
    [Google Scholar]
  23. Ricarte F., Menjivar R., Chhun S., Soreta T., Oliveira L., Hsueh T., Serranilla M., Gharakhanian E. ( 2011). A genome-wide immunodetection screen in S. cerevisiae uncovers novel genes involved in lysosomal vacuole function and morphology. PLoS ONE 6:e23696 [View Article][PubMed]
    [Google Scholar]
  24. Sarry J. E., Chen S., Collum R. P., Liang S., Peng M., Lang A., Naumann B., Dzierszinski F., Yuan C. X. et al. ( 2007). Analysis of the vacuolar luminal proteome of Saccharomyces cerevisiae . FEBS J 274:4287–4305 [View Article][PubMed]
    [Google Scholar]
  25. Schauer A., Knauer H., Ruckenstuhl C., Fussi H., Durchschlag M., Potocnik U., Fröhlich K. U. ( 2009). Vacuolar functions determine the mode of cell death. Biochim Biophys Acta 1793:540–545 [View Article][PubMed]
    [Google Scholar]
  26. Silva R. D., Manon S., Gonçalves J., Saraiva L., Côrte-Real M. ( 2011). Modulation of Bax mitochondrial insertion and induced cell death in yeast by mammalian protein kinase Cα. Exp Cell Res 317:781–790 [View Article][PubMed]
    [Google Scholar]
  27. Sousa M. J., Azevedo F., Pedras A., Marques C., Coutinho O. P., Preto A., Gerós H., Chaves S. R., Côrte-Real M. ( 2011). Vacuole–mitochondrial cross-talk during apoptosis in yeast: a model for understanding lysosome–mitochondria-mediated apoptosis in mammals. Biochem Soc Trans 39:1533–1537 [View Article][PubMed]
    [Google Scholar]
  28. Tohge T., Ramos M. S., Nunes-Nesi A., Mutwil M., Giavalisco P., Steinhauser D., Schellenberg M., Willmitzer L., Persson S. et al. ( 2011). Toward the storage metabolome: profiling the barley vacuole. Plant Physiol 157:1469–1482 [View Article][PubMed]
    [Google Scholar]
  29. Wickner W. ( 2002). Yeast vacuoles and membrane fusion pathways. EMBO J 21:1241–1247 [View Article][PubMed]
    [Google Scholar]
  30. Wiederhold E., Gandhi T., Permentier H. P., Breitling R., Poolman B., Slotboom D. J. ( 2009). The yeast vacuolar membrane proteome. Mol Cell Proteomics 8:380–392[PubMed] [CrossRef]
    [Google Scholar]
  31. Zhang Y. Q., Gamarra S., Garcia-Effron G., Park S., Perlin D. S., Rao R. ( 2010). Requirement for ergosterol in V-ATPase function underlies antifungal activity of azole drugs. PLoS Pathog 6:e1000939 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.062570-0
Loading
/content/journal/micro/10.1099/mic.0.062570-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error